- #1
gtfitzpatrick
- 379
- 0
Homework Statement
Decide if the following are Equivalence relations and if so describe their classes
i) a[itex]\equiv[/itex] b if 2 divides a^2+b^2
ii) a[itex]\equiv[/itex] b if 2b[itex]\geq[/itex] a
Homework Equations
The Attempt at a Solution
ii) isn't an equivalence relation. it is reflexive but not symmetric. 2a [itex]\geq[/itex] b
i) Its reflexive as [itex]a^2[/itex]+[itex]a^2[/itex] = 2[itex]a^2[/itex] which is divisable by 2.
its symmetric
[itex]a^2[/itex]+[itex]b^2[/itex] = 2x
[itex]b^2[/itex]+[itex]a^2[/itex] = [itex]2a^2[/itex]+[itex]2b^2[/itex]-[itex]a^2[/itex]-[itex]b^2[/itex]
[itex]b^2[/itex]+[itex]a^2[/itex] = [itex]2a^2[/itex]+[itex]2b^2[/itex]-2x
[itex]b^2[/itex]+[itex]a^2[/itex] = 2[itex]a^2[/itex]+[itex]b^2[/itex]-x)
so its divisable by 2
its symetric
[itex]a^2[/itex]+[itex]b^2[/itex] = 2x
[itex]b^2[/itex]+[itex]c^2[/itex] = 2y
we need to show [itex]a^2[/itex]+[itex]c^2[/itex] = 2w
[itex]b^2[/itex] = 2y-[itex]c^2[/itex]
this gives[itex]a^2[/itex]+2y-[itex]c^2[/itex] = 2x
[itex]a^2[/itex]+[itex]c^2[/itex] = 2x-2y-[itex]2c^2[/itex]
[itex]a^2[/itex]+[itex]c^2[/itex] = 2(x-y-[itex]c^2[/itex])
so it is an equivalence relation. As for the classes are there infinity/2 classes? plus how do i describe them? if a & b are both even or both odd they are divisable by 2 but if a is odd and b is even or vise versa then it is not...