At what distance does a charge attain half its speed at infinity?

In summary: I can work out the algebra. I'll try it out - thanks!In summary, the problem involves a fixed charge and a free charge released from rest at a given position. Using the equations for potential energy, kinetic energy, and force, along with conservation of energy, the distance from the origin where the free charge attains half of its maximum speed can be calculated. The problem is over-determined, so the correct approach must be used to solve it.
  • #1
alyssa.d
2
0

Homework Statement


A charge of 3.40μC is held fixed at the origin. A second charge of 3.40μC is released from rest at the position (1.25m, 0.570m). If the mass of the second charge is 2.49 m, and its speed at infinity is 7.79 m/s, at what distance from the origin does the second charge attain half the speed it will have at infinity?


Homework Equations


I really am unsure which equations to use. However, I think that, when the second charge attains half the speed it will have at infinity, half its energy will be kinetic and half its energy will be potential. (Right? No? Maybe?) So some relevant equations would be:
Ki + Ui = Kf + Uf
F = kQ/r^2
ΔK = 1/2mvf^2 - 1/2mvi^2
ΔV = qΔV

You are solving for r.

The Attempt at a Solution


My issue in physics always is that I'm unsure how to set up the problem, and I never know which equations to pick. Lately this has been compounded by the fact that I've lost class and study time due to severe migraines, so I've been teaching myself almost everything (and this part of physics is something I've been struggling to pick up on my own).

Anyway, my attempt at a solution was this:
1/2mvi^2 + qVi = 1/2mvf^2 + qVf
1/2mvi^2 + q(kq/ri^2) = 1/2mf^2 + q(kq/rf^2)

I plugged in the numbers given in the problem (using 1.37 for ri, calculated from the initial position of the second charge). I got an rf value of 5.37. Any help would be appreciated!
 
Physics news on Phys.org
  • #2
alyssa.d said:

Homework Statement


A charge of 3.40μC is held fixed at the origin. A second charge of 3.40μC is released from rest at the position (1.25m, 0.570m). If the mass of the second charge is 2.49 m, and its speed at infinity is 7.79 m/s, at what distance from the origin does the second charge attain half the speed it will have at infinity?

Homework Equations


I really am unsure which equations to use. However, I think that, when the second charge attains half the speed it will have at infinity, half its energy will be kinetic and half its energy will be potential. (Right? No? Maybe?) So some relevant equations would be:
Ki + Ui = Kf + Uf
F = kQ/r^2
ΔK = 1/2mvf^2 - 1/2mvi^2
ΔV = qΔV

You are solving for r.

The Attempt at a Solution


My issue in physics always is that I'm unsure how to set up the problem, and I never know which equations to pick. Lately this has been compounded by the fact that I've lost class and study time due to severe migraines, so I've been teaching myself almost everything (and this part of physics is something I've been struggling to pick up on my own).

Anyway, my attempt at a solution was this:
1/2mvi^2 + qVi = 1/2mvf^2 + qVf
1/2mvi^2 + q(kq/ri^2) = 1/2mf^2 + q(kq/rf^2)

I plugged in the numbers given in the problem (using 1.37 for ri, calculated from the initial position of the second charge). I got an rf value of 5.37. Any help would be appreciated!
Hello alyssa. Welcome to PF !

(Use the X2 icon for superscripts, X2 for subscripts.)

Is "(Right? No? Maybe?)" a multiple choice? ... then No.

If the second charge has half it's max speed, does that mean it has half it's max Kinetic Energy? ... No.

You'll need to show what you did in more detail.

What's the KE at infinity?

What's the KE when the second charge is at half speed?
 
  • #3
alyssa.d said:
I think that, when the second charge attains half the speed it will have at infinity, half its energy will be kinetic and half its energy will be potential.
Conservation of energy would be a good place to start.

My issue in physics always is that I'm unsure how to set up the problem, and I never know which equations to pick.
Don't worry about remembering the equations to pick - sketch a diagram of the situation. This is the thing to practice.

The free charge will accelerate radially away from the fixed one ... so you just need to know the initial radius and the angle rather than the x-y components.

Anyway, my attempt at a solution was this:
1/2mvi^2 + qVi = 1/2mvf^2 + qVf
1/2mvi^2 + q(kq/ri^2) = 1/2mf^2 + q(kq/rf^2)

I plugged in the numbers given in the problem (using 1.37 for ri, calculated from the initial position of the second charge). I got an rf value of 5.37. Any help would be appreciated!
What is the initial velocity of the free charge?

Try thinking about this in terms of work. dW=F(r).d
Do you know the equation for the potential of a point charge?
 
  • #4
Yes. The initial velocity of the free charge is 0, since it's released from rest. The equation for the potential of a point charge is V = kq/r. I feel like I am making this more difficult than it needs to be, like I am missing something very simple just in terms of how I'm thinking about setting it up.
 
  • #5
alyssa.d said:
Yes. The initial velocity of the free charge is 0, since it's released from rest. The equation for the potential of a point charge is V = kq/r. I feel like I am making this more difficult than it needs to be, like I am missing something very simple just in terms of how I'm thinking about setting it up.
The problem appears to me to be over-determined.

ri is given, so you have initial potential energy, Ui = q1V1 = kq2/r1.

Ki = 0.

Uf = 0, so you can find Kf from conservation of energy.

You are given the mass of the charged particle, so you can determine the speed at infinity.

Does that agree with the speed given?

Well, if that mass is 2.49 grams, then yes, the speed at infinity is consistent with the other given information.
 
  • #6
If I use K for kinetic energy:

* You have ##v_\infty = \sqrt{2K_\infty/m}##

* You know that loss in potential energy moving to position r = gain in kinetic energy.

* The speed at position r must be given by ##v=\sqrt{2K(r)/m}##

* You want to find r so that ##v(r)/v_\infty=1/2##.

That help?
 

FAQ: At what distance does a charge attain half its speed at infinity?

What is the concept of speed of a charge at infinity?

The speed of a charge at infinity refers to the velocity at which a charged particle, such as an electron, moves when it is infinitely far away from any other charged particles or external forces.

How is the speed of a charge at infinity calculated?

The speed of a charge at infinity can be calculated using the Coulomb force equation, which takes into account the charge of the particle and the distance between it and any other charged particles or external forces.

Is the speed of a charge at infinity constant?

Yes, the speed of a charge at infinity is constant and does not change unless there is a change in the charge or distance of the particle.

What is the significance of the speed of a charge at infinity?

The speed of a charge at infinity is an important concept in electrostatics and helps us understand the behavior of charged particles in an isolated system. It also helps in calculations of electric potential and electric fields.

Can the speed of a charge at infinity be greater than the speed of light?

No, according to the theory of relativity, the speed of light is the maximum speed that any object can attain. Therefore, the speed of a charge at infinity cannot exceed the speed of light.

Back
Top