- #1
blob84
- 25
- 0
Hello, I want to calculate the sum of this series:
[tex]\sum_{n=1}^\infty \frac{3^n+1}{4^n+2}[/tex],
I know the series converges, I only found this useful way to factor the denominator:
[tex] 4^n+2=2^{2n}+2=4^n(1+2^{-2n+1})[/tex],
now i have: [tex]\frac{3^n+1}{4^n+2}=(\frac{3^n}{4^n}+\frac{1}{4^n})(\frac{1}{1+2^{-2n+1}})[/tex],
i can calculate [tex]\sum_{n=1}^\infty \frac{3^n}{4^n}+ \sum_{n=1}^\infty \frac{1}{4^n}[/tex]but what should be done with
[tex]\frac{1}{1+2^{-2n+1}}[/tex]?
[tex]\sum_{n=1}^\infty \frac{3^n+1}{4^n+2}[/tex],
I know the series converges, I only found this useful way to factor the denominator:
[tex] 4^n+2=2^{2n}+2=4^n(1+2^{-2n+1})[/tex],
now i have: [tex]\frac{3^n+1}{4^n+2}=(\frac{3^n}{4^n}+\frac{1}{4^n})(\frac{1}{1+2^{-2n+1}})[/tex],
i can calculate [tex]\sum_{n=1}^\infty \frac{3^n}{4^n}+ \sum_{n=1}^\infty \frac{1}{4^n}[/tex]but what should be done with
[tex]\frac{1}{1+2^{-2n+1}}[/tex]?