- #1
player1_1_1
- 114
- 0
Homework Statement
using cauchy integral formula calculate
[tex]\int\limits_C\frac{e^{2z}}{z^2-4}\mbox{d}z[/tex]
where [tex]C[/tex] is closed curve (point [tex]z=2[/tex] is inside)
The Attempt at a Solution
[tex]\ldots=\int\limits_C\frac{e^{2z}}{(z-2)(z+2)}\mbox{d}z=\int\limits_C\frac{f(z)}{z-2}\mbox{d}z=2\pi if(2)=2\pi i\frac{e^{2\cdot2}}{4}=\frac12\pi e^4i[/tex]
is it correct?