- #1
indigojoker
- 246
- 0
Homework Statement
in the decay process, [tex] \pi ^{+} -> \mu^{+} + \nu_{\mu} [/tex]
show that for a neutrino of finite (but small) mass, compared with the case of the massless neutrino, the muon momentum would be reduced by the fraction:
[tex]\frac{p'}{p}= - \frac{m_{\nu}^2 (m_{\pi}^2+m_{\mu}^2)}{(m_{\pi}^2-m_{\mu}^2)^2} [/tex]
Calculation of the muon's momentum with massless neutrino:
[tex] p_{\mu}=p_{\pi}-p_{\nu}[/tex]
[tex] p_{\mu}^2=p_{\pi}^2+p_{\nu}^2-2m_{\pi}E_{\nu}[/tex]
We know:
[tex]p_{\mu}=m_{\mu}^2c^2[/tex]
[tex]p_{\pi}=m_{\pi}^2c^2[/tex]
[tex]p_{\nu}=0[/tex]
[tex] m_{\nu}^2c^2=m_{\pi}^2c^2-2m_{\pi}E_{\nu}[/tex]
But: [tex] E_{\nu}=|p_{\nu}|c=|p_{\mu}|c [/tex]
[tex] 2 m_{\pi} |p_{\mu}|=(m_{\pi}^2-m_{\mu}^2)c [/tex]
[tex]|p_{\mu}|=\frac{m_{\pi}^2-m_{\mu}^2}{2m_{\pi}}c [/tex]
Using the same method, but with [tex]p_{\nu}=m_{\nu}^2c^2[/tex]
we get:
[tex] 2 m_{\pi} |p_{\nu}|=(m_{\pi}^2-m_{\mu}^2-m_{\nu}^2)c [/tex]
[tex]|p'_{\mu}|=\frac{m_{\pi}^2-m_{\mu}^2-m_{\nu}^2}{2m_{\pi}}c [/tex]
The fraction I get is:
[tex]\frac{p'}{p}=\frac{m_{\pi}^2-m_{\mu}^2-m_{\nu}^2}{m_{\pi}^2-m_{\mu}^2}[/tex]
If i multiply by [tex]\frac{m_{\pi}^2-m_{\mu}^2}{m_{\pi}^2-m_{\mu}^2}[/tex] I do not get the above result. Any idea where i went wrong?
Last edited: