- #1
lss1
- 2
- 0
I've been mulling this over all weekend, and I've decided to get some help on this. The problem is writing a function to describe a bullet's path. I've asked two people about it my Physics teacher (who said he didn't know how) and my French teacher, who was a nuclear engineer for the US Navy (who said it was impossible). I don't know much about ballistics, but I am very willing to learn.
My Physics teacher started out with the equation $$y = v_y t + \frac{1}{2} a t^2$$ and the equation $$x = v_x t.$$ So I've been looking for a way to combine these two functions. I asked my French teacher about it and he said it was impossible because at the beginning of the travel-path, the motion is dominated by the x-component, and as it goes on the velocity in the x-direction slows down, and the y-acceleration becomes more dominant. He said that as the motion changes from x-dominated to y-dominated, the variable, t, becomes two different variables, and therefore cannot be written in the same function. I've been thinking it could work as a multivariable function, but I'm not sure.
Any help would be gratefully appreciated.
My Physics teacher started out with the equation $$y = v_y t + \frac{1}{2} a t^2$$ and the equation $$x = v_x t.$$ So I've been looking for a way to combine these two functions. I asked my French teacher about it and he said it was impossible because at the beginning of the travel-path, the motion is dominated by the x-component, and as it goes on the velocity in the x-direction slows down, and the y-acceleration becomes more dominant. He said that as the motion changes from x-dominated to y-dominated, the variable, t, becomes two different variables, and therefore cannot be written in the same function. I've been thinking it could work as a multivariable function, but I'm not sure.
Any help would be gratefully appreciated.