- #1
Dannystu
- 16
- 0
Homework Statement
A car, mass m=2500kg, rounds a curve on a flat road at a speed v= 15 m/s. The radius of curvature of the curve is r= 60m. There is obviously (static) friction between the road and the car tires, or the car would not stay on the curve.
Homework Equations
a.) Compute the centripetal acceleration experienced by the car.
b.)Compute the centripetal force experienced by the car. What phenomenon is the cause of this centripetal force?
c.)Compute the force of (static) friction between the tires and the road.
d.) If the given speed of V=15 m/s is known to be the maximum speed for this curve for which a car will not skid, compute the coeffiecient of static friction between the tires and the road.
The Attempt at a Solution
Part a)
Centripetal acceleration= V^2/r
=3.75 m/s^2
b.) Centripetal force = M*(V^2/r)
=9375N
c.) I have no clue on how to do part C and D, I know the formula for Static friction is
Fs= Coefficient of static friction * normal force
I calculated the normal force to be 24,500N (mass times gravity) since there are no other forces acting on the vertical direction. Can someone give me a push in the right direction?