- #1
richardbsmith
- 6
- 0
This is probably a geometry question more that a physics question. I am trying to prove that in uniform circular motion [tex]\Delta[/tex] V[tex]/[/tex]V= s[tex]/[/tex]R.
I am basically trying to show that S forms a right triangle with [tex]\Delta[/tex]V, when [tex]V{1}[/tex] is added to [tex]V{2}[/tex] as a vector. (This is to demonstrate that the triangles are similar.)
I understand that the angle formed by S and [tex]\Delta[/tex]V is a right angle because it obviously inscribes the diameter. I just cannot seem to find a satisfactory proof that [tex]\Delta[/tex]V must necessarily intersect the circle at the diameter.
Probably not explaining this very well.
I am basically trying to show that S forms a right triangle with [tex]\Delta[/tex]V, when [tex]V{1}[/tex] is added to [tex]V{2}[/tex] as a vector. (This is to demonstrate that the triangles are similar.)
I understand that the angle formed by S and [tex]\Delta[/tex]V is a right angle because it obviously inscribes the diameter. I just cannot seem to find a satisfactory proof that [tex]\Delta[/tex]V must necessarily intersect the circle at the diameter.
Probably not explaining this very well.