Centripetal acceleration v^2/r?

In summary: It is just something that we have to accept without a rational explanation. In summary, centripetal acceleration is proportional to the velocity squared, and inversely proportional to the radius of curvature of the object.
  • #1
hellbike
61
0
can someone justify why centripetal acceleration = v^2/r?

And I'm not asking about algebraic proof.
 
Physics news on Phys.org
  • #2
Would you like a calculus proof?

Let me look it up... nah...

Type "khanacademy calculus proof a=v^2/r" into Google. Then click the first video result.
 
  • #3
hellbike said:
can someone justify why centripetal acceleration = v^2/r?

And I'm not asking about algebraic proof.

An object moving in space will move in a straight line at a constant velocity by Newton's first law of inertia. If the object is constrained in someway not to move in a straight line, then it must be experiencing an acceleration. By definition acceleration is a time rate change of velocity. If you don't want a mathematical proof of this, you must accept intuitively that this acceleration is not proportional to the velocity of the object, but is proportional to the velocity squared. Also it is inversely proportional to the radius of curvature of the object as it curves through space. Remember by definition acceleration is a time rate change of velocity. Velocity is a vector, so it has both magnitude and direction. If the object's direction is changing, then it must be accelerating also, even if the magnitude of the velocity is not. Imagine a car going around a circular race track with a radius of 100 feet at 65 miles per hour. It will experience an acceleration proportional to its speed squared and inversely proportional to its radius. The driver would experience an appreciable centrifugal force pulling him radially outward. Now imagine the same car going around a circular race track with the same speed, but the radius is now 100 miles. The acceleration will now be less. The driver would barely perceive the centrifugal force in his frame pulling him radially outward. It all boils down to the speed squared and how fast the car is turning in inertial space. Nature does not like change. For some unknown reason that is still not fully understood, inertia rises whenever there is a change in the velocity of an object. No one has yet come up with a fully accepted, bona fide explanation of the cause of inertial forces.
 
Last edited:

FAQ: Centripetal acceleration v^2/r?

What is centripetal acceleration v^2/r?

Centripetal acceleration v^2/r is a measurement of the acceleration of an object moving in a circular path. It is equal to the square of the object's velocity divided by the radius of the circle.

How is centripetal acceleration v^2/r calculated?

Centripetal acceleration v^2/r is calculated by taking the square of the object's velocity and dividing it by the radius of the circle. The formula for calculating centripetal acceleration is given as a = v^2/r.

What is the difference between centripetal acceleration and centrifugal force?

Centripetal acceleration and centrifugal force are often confused, but they are not the same thing. Centripetal acceleration is the acceleration of an object moving in a circular path, while centrifugal force is the outward force experienced by the object due to its circular motion. Centrifugal force is a fictitious force and does not actually exist.

What are some real-world examples of centripetal acceleration v^2/r?

There are many real-world examples of centripetal acceleration v^2/r, such as a car turning around a curve, a satellite orbiting the Earth, or a roller coaster going around a loop. Anytime an object moves in a circular path, centripetal acceleration is present.

How does centripetal acceleration v^2/r relate to Newton's laws of motion?

Centripetal acceleration v^2/r is related to Newton's first law of motion, also known as the law of inertia. This law states that an object will continue moving in a straight line at a constant speed unless acted upon by an external force. Centripetal acceleration is the force that acts on an object to keep it moving in a circular path, in accordance with this law.

Similar threads

Back
Top