- #1
Yami
- 20
- 0
Homework Statement
Show that ##\iint_{S}(x^2 + y^2)d\sigma = \frac{9\pi}{4}##
where ##S = \{(x,y,z): x > 0, y > 0, 3 > z > 0, z^2 = 3(x^2 + y^2)\}##
Homework Equations
##\iint_{S}f(x,y,z)d\sigma = \iint_{R}f(r(x,y))\sqrt{[r_x(x,y)]^2 + [r_y(x,y)]^2 + 1}##
where ##r : R → ℝ^3, R \in ℝ^2## parametrizes the surface S.
The Attempt at a Solution
##\iint_{S}(x^2 + y^2)d\sigma = \iint_{R}(x^2 + y^2)\sqrt{\frac{9^2}{3(x^2 + y^2)} + \frac{9^2}{3(x^2 + y^2)}+ 1}dxdy##
## = \int_{0}^{2\pi}\int_{0}^{3}r^2\sqrt{\frac{9r^2}{3r^2} + 1} drd\theta## (polar coordinates)
##= \int_{0}^{2\pi}\int_{0}^{3}2r^2drd\theta = 36\pi##
This is obviously wrong. I'm guessing I have the wrong domain restrictions
##R = \{ (r, \theta) : 0 < \theta < 2\pi, 0 < r < 3\}##
If so, I can't figure out how to get the correct restriction.