- #1
whatisreality
- 290
- 1
Homework Statement
I'm trying to find the direction and magnitude of Earth's gravity on some projectile. The question states that I can ignore z, and that the origins of the x and y axes should be on the surface of the planet. I should then use Newton's law of Gravity to find the direction and magnitude of the acceleration due to gravity, but Newton's law assumes the origin at the centre of the planet.
Homework Equations
The Attempt at a Solution
##g = \frac{-GM\overrightarrow{r}}{r^3}##
I'm splitting g into x and y components, I think that makes it easier. So for the y component, ##\overrightarrow{r}## is in the -y direction, so that's fine. And to find r, just add Earth's radius onto the y-value, so
##g_{y}= \frac{-GM}{(radius+y)^3}## and I hope setting this equal to the y component means I don't need to multiply by ##\overrightarrow{y}##.
The x bit I'm finding a bit harder. The distance r in Newton's law is going to be ##\sqrt{x^2+radius^2}##. The direction ##\overrightarrow{r}## I'm finding it hard to get my head round, because I think it's going to involve bits that point in the x direction and bits in y!
So I think that rcos(theta) is the bit in the y direction and rsin(theta) the bit in x. So the bit that points in the y direction, do I add that to my already calculated y component then?