- #1
CAF123
Gold Member
- 2,948
- 88
Homework Statement
Use ##D = \frac{d}{dx}##as a differential operator and the following $$(D - a)(D -b)[f(x)e^{\lambda x}] = e^{\lambda x} (D + \lambda -a)(D + \lambda -b)f(x)$$ to obtain $$(D^2 + D +1)[(Ax^2 + Bx + C)e^{ix}] = (iAx^2 + [iB + (4i + 2)A]x + 2A + (2i + 1)B + iC)e^{ix}$$
The Attempt at a Solution
This question is part of a bigger question about solving a differential equation with a complex RHS. I proved the first equality in another exercise. To get it in the same form so I could use it I found an a,b such that the left hand sides of both equalities hold. That is, :$$D^2 - bD - aD + ab = D^2 + D + 1 \Rightarrow a = -1/2 \pm \sqrt{3}/2 i, \,\,b = 1/(-1/2 \pm \sqrt{3}/2 i).$$
I then subbed in these a,b on the RHS of the first equality, ##\lambda = i## and ##f(x) = (Ax^2 + Bx + C)##. With this I proceeded and multiplied out terms etc.. and in the end I recover some terms but others have the value for a calculated on the denominator. E.g I want a single iBx term but in my answer I have ##iBx/(-1/2 \pm \sqrt{3}/2 i)## etc..
So, I just want to check: Is my method okay?