- #1
EdMel
- 13
- 0
Homework Statement
Consider the function [itex]\delta_{\epsilon}(x)[/itex] defined by
[tex]\delta_{\epsilon}(x)=\begin{cases}
0\text{,} & x<-\epsilon\text{,}\\
\frac{3}{4\epsilon^{3}}(\epsilon^{2}-x^{2})\text{,} & \epsilon\leq x\leq\epsilon\text{,}\\
0\text{,} & \epsilon<x\text{,}
\end{cases}[/tex]
(b) Consider a function [itex]f[/itex], defined on [itex]\mathbb{R}[/itex]. which is continuous. Use
the Mean Value Theorem of integral calculus to show that
[tex]\overset{\infty}{\underset{-\infty}{\intop}}f(x)\delta_{\epsilon}(x)dx=f(\theta)[/tex]
where [itex]-\epsilon\leq\theta\leq\epsilon[/itex].
Homework Equations
I guess the definition of [itex]\delta_{\epsilon}(x)[/itex] implies [itex]\epsilon>0[/itex], but I will assume this for my answer anyway.
I will refer to the Mean Value Theorem as MVT.
The Attempt at a Solution
Let,
[tex]I=\overset{\infty}{\underset{-\infty}{\intop}}f(x)\delta_{\epsilon}(x)dx=\overset{\epsilon}{\underset{-\epsilon}{\intop}}f(x)\delta_{\epsilon}(x)dx\quad\text{, as }\delta_{\epsilon}(x)=0\quad\forall\quad\vert x\vert\geq\epsilon\text{,}[/tex]
[itex]=(\epsilon-(-\epsilon))f(\theta)\delta_{\epsilon}(\theta)\text{, }[/itex] [itex]-\epsilon\leq\theta\leq\epsilon[/itex], by Mean Value Theorem,
[tex]=2\epsilon f(\theta)\frac{3}{4\epsilon^{3}}(\epsilon^{2}-\theta^{2})\\=f(\theta)\frac{3}{2\epsilon^{3}}(\epsilon^{2}-\theta^{2})[/tex]
Then I am not sure how to proceed. I thought maybe there would be another application of MVT. The best argument I can come up with continues as ...
as [itex]\epsilon>0[/itex] is arbitrary let [itex]\epsilon=\sqrt{3}\vert\theta\vert[/itex] ([itex]-\epsilon\leq\theta\leq\epsilon[/itex] is still satisfied), then
[tex]\frac{3}{2\epsilon^{3}}(\epsilon^{2}-\theta^{2})=\frac{3}{2(\sqrt{3}\vert\theta\vert)^{3}}((\sqrt{3}\vert \theta\vert)^{2}-\theta^{2})=1[/tex]
so,
[tex]I=\overset{\infty}{\underset{-\infty}{\intop}}f(x)\delta_{\epsilon}(x)dx=f(\theta)\text{,}\quad \epsilon=\sqrt{3}\vert\theta\vert\text{.}[/tex]
The problem I have now is the [itex]\theta[/itex] we know exists by MVT is dependent on [itex]\epsilon[/itex] we choose. Is it then valid to set [itex]\epsilon[/itex] as a function of [itex]\theta[/itex]?
Thanks in advance.
Last edited: