- #1
- 14,345
- 6,835
I have a technical question that puzzles me.
Let [tex]T_{\mu\nu}[/tex] be a conserved energy-momentum tensor in curved spacetime
[tex]\nabla^{\mu}T_{\mu\nu}=0[/tex].
Let [tex]\Sigma[/tex] be a curved spacelike hypersurface with the unit vector [tex]n^{\mu}[/tex] normal to [tex]\Sigma[/tex].
Define energy [tex]H[/tex] on [tex]\Sigma[/tex] as
[tex]H \equiv \int_{\Sigma} d^3x |g^{(3)}|^{1/2} n^{\mu} n^{\nu} T_{\mu\nu} [/tex]
where [tex]g^{(3)}[/tex] is the determinant of the induced metric on [tex]\Sigma[/tex].
The question: Does [tex]H[/tex] depend on [tex]\Sigma[/tex] ?
(It puzzles me because I have an argument that it does, and another argument that it doesn't.)
Let [tex]T_{\mu\nu}[/tex] be a conserved energy-momentum tensor in curved spacetime
[tex]\nabla^{\mu}T_{\mu\nu}=0[/tex].
Let [tex]\Sigma[/tex] be a curved spacelike hypersurface with the unit vector [tex]n^{\mu}[/tex] normal to [tex]\Sigma[/tex].
Define energy [tex]H[/tex] on [tex]\Sigma[/tex] as
[tex]H \equiv \int_{\Sigma} d^3x |g^{(3)}|^{1/2} n^{\mu} n^{\nu} T_{\mu\nu} [/tex]
where [tex]g^{(3)}[/tex] is the determinant of the induced metric on [tex]\Sigma[/tex].
The question: Does [tex]H[/tex] depend on [tex]\Sigma[/tex] ?
(It puzzles me because I have an argument that it does, and another argument that it doesn't.)