- #1
brydustin
- 205
- 0
I am trying to take the derivative of an
inner product (in the most general sense
over L^2), and was curious if the
derivative follows the "chain rule" for
inner products.
i.e. Does D_y(<f,g>) = <D_y(f),g> + <f,D_y(g)>
where D_y is the partial derivative w.r.t. y.
So for example, IT IS TRUE that if f=x*y and g=sin(x*y)
and the inner product <f,g> = Integral(f#g, w.r.t. x,-Pi,+Pi), f# = complex conj. of f.
then the equality holds.
In other words, differentiating w.r.t. y and integrating w.r.t x the forumla holds.
It seems more trivial if the variable which is being differentiated & integrated is the same.
But is it true in general?
What if we are differentiating more abstract inner products (i.e. not necessarily integration).
inner product (in the most general sense
over L^2), and was curious if the
derivative follows the "chain rule" for
inner products.
i.e. Does D_y(<f,g>) = <D_y(f),g> + <f,D_y(g)>
where D_y is the partial derivative w.r.t. y.
So for example, IT IS TRUE that if f=x*y and g=sin(x*y)
and the inner product <f,g> = Integral(f#g, w.r.t. x,-Pi,+Pi), f# = complex conj. of f.
then the equality holds.
In other words, differentiating w.r.t. y and integrating w.r.t x the forumla holds.
It seems more trivial if the variable which is being differentiated & integrated is the same.
But is it true in general?
What if we are differentiating more abstract inner products (i.e. not necessarily integration).