- #1
Breo
- 177
- 0
I have a doubt since I see the next equation and the corresponding matrix:
$$ ds^2 = \Bigg( \frac{1-\frac{r_s}{4\rho}}{1+\frac{r_s}{4\rho}}\Bigg)^2 dt^2 - \Big(1+\frac{r_s}{4\rho}\Big)^4 (d\rho^2 + p^2 d\Omega_2^2) $$$$ g_{\mu\nu} =
\left( \begin{array}{ccc}
\Bigg( \frac{1-\frac{r_s}{4\rho}}{1+\frac{r_s}{4\rho}}\Bigg)^2 & 0 & 0 & 0 \\
0 & -\Big(1+\frac{r_s}{4\rho}\Big)^2 & 0 & 0 \\
0 & 0 & -\rho^2 & 0 \\
0 & 0 & 0 & -sin^2 \theta \end{array} \right) $$
My doubt comes because I see a quadratic term in the matrix: $$ g_{11} = -\Big(1+\frac{r_s}{4\rho}\Big)^2 $$ however, a power 4 term in the ds² equation. Why?
$$ ds^2 = \Bigg( \frac{1-\frac{r_s}{4\rho}}{1+\frac{r_s}{4\rho}}\Bigg)^2 dt^2 - \Big(1+\frac{r_s}{4\rho}\Big)^4 (d\rho^2 + p^2 d\Omega_2^2) $$$$ g_{\mu\nu} =
\left( \begin{array}{ccc}
\Bigg( \frac{1-\frac{r_s}{4\rho}}{1+\frac{r_s}{4\rho}}\Bigg)^2 & 0 & 0 & 0 \\
0 & -\Big(1+\frac{r_s}{4\rho}\Big)^2 & 0 & 0 \\
0 & 0 & -\rho^2 & 0 \\
0 & 0 & 0 & -sin^2 \theta \end{array} \right) $$
My doubt comes because I see a quadratic term in the matrix: $$ g_{11} = -\Big(1+\frac{r_s}{4\rho}\Big)^2 $$ however, a power 4 term in the ds² equation. Why?
Last edited: