- #1
leright
- 1,318
- 19
I am a double major in EE and physics. I have taken all of the courses required of me (calc 1-3, DiffEQ, advanced engineering math, prob/stats) and I am considering taking 3 more math classes for a mth minor.
I am looking at taking linear alg (of course), advanced calculus, and PDE.
Below are the course descriptions:
MCS 3723 - Advanced Calculus
Line and surface integrals, Green's theorem, Stokes' theorem, Divergence Theorem. Topics from differential and integral calculus theory. Power series solution of differential equations. Bessel functions, Leg endre's equation. Lecture 3 hrs.
MCS 3863 - Linear Algebra
Systems of linear equations, matrices, determinants, eigenvalues, eigenvectors, Finite-dimensional vector spaces, linear transformations and their matrices, Gram-Schmidt orthogonalization, inner product spaces. Lecture 3 hrs.
MCS 3733 - Partial Diff Equations
Orthogonality, orthonormal bases, Fourier series, Fourier integral. Solution techniques for first and second order equations. Solutions of homogeneous and non-homogeneous boundary value problems. Sturm-Liouville theory. Lecture 3 hrs.
Are these the typical topics covered in these types of courses at most universities? Would these be beneficial to a physicist/engineer? Do these extra math courses appeal to grad schools?
Thanks.
I am looking at taking linear alg (of course), advanced calculus, and PDE.
Below are the course descriptions:
MCS 3723 - Advanced Calculus
Line and surface integrals, Green's theorem, Stokes' theorem, Divergence Theorem. Topics from differential and integral calculus theory. Power series solution of differential equations. Bessel functions, Leg endre's equation. Lecture 3 hrs.
MCS 3863 - Linear Algebra
Systems of linear equations, matrices, determinants, eigenvalues, eigenvectors, Finite-dimensional vector spaces, linear transformations and their matrices, Gram-Schmidt orthogonalization, inner product spaces. Lecture 3 hrs.
MCS 3733 - Partial Diff Equations
Orthogonality, orthonormal bases, Fourier series, Fourier integral. Solution techniques for first and second order equations. Solutions of homogeneous and non-homogeneous boundary value problems. Sturm-Liouville theory. Lecture 3 hrs.
Are these the typical topics covered in these types of courses at most universities? Would these be beneficial to a physicist/engineer? Do these extra math courses appeal to grad schools?
Thanks.