- #1
JJBladester
Gold Member
- 286
- 2
Homework Statement
The acceleration of point A is a = -5.4sin(kt) ft/s2.
k = 3 rad/s.
When t = 0, x = 0 and v = 1.8 ft/s.
Determine the position and velocity of point A when t = 0.5s
Answers: x = 0.598 ft v = 0.1273 ft/s
Homework Equations
[URL]http://latex.codecogs.com/gif.latex?x=distance[/URL]
[URL]http://latex.codecogs.com/gif.latex?\dot{x}=velocity[/URL]
[URL]http://latex.codecogs.com/gif.latex?\ddot{x}=acceleration[/URL]
[PLAIN]http://latex.codecogs.com/gif.latex?\dot{x}(t_{2})=\dot{x}(t_{1})+\int_{t_{1}}^{t_{2}}\ddot{x}dt
[PLAIN]http://latex.codecogs.com/gif.latex?x(t_{2})=x(t_{1})+\int_{t_{1}}^{t_{2}}\dot{x}dt
The Attempt at a Solution
The velocity of point A at t = 0.5s is:
[PLAIN]http://latex.codecogs.com/gif.latex?\dot{x}(t_{2})=\dot{x}(t_{1})+\int_{t_{1}}^{t_{2}}\ddot{x}dt
[URL]http://latex.codecogs.com/gif.latex?\dot{x}(0.5)=1.8+\int_{0}^{0.5}[-5.4sin(kt)]dt=0.1273ft/s[/URL]
To find the position of point A at t = 0.5s, I want to use this formula
[PLAIN]http://latex.codecogs.com/gif.latex?x(t_{2})=x(t_{1})+\int_{t_{1}}^{t_{2}}\dot{x}dt
But, since I don't have a formula for [tex]\dot{x}[/tex], I'm not sure how to go about solving for the position of point A at time t = 0.5s.
So far, I have:
[URL]http://latex.codecogs.com/gif.latex?x(t_{2})=\int_{0}^{0.5}\dot{x}dt[/URL]
Last edited by a moderator: