- #1
MissP.25_5
- 331
- 0
Hello.
How do I find the limit of this term?
$$\lim_{{n}\to{\infty}}|\left(\frac{n}{n+1}\right)^{\!{n^2}}|^\frac{1}{n}$$
This is the working but I don't understand how to get the third line.
r = lim(n→∞) |[n/(n+1)]^(n^2)|^(1/n)
..= lim(n→∞) [n/(n+1)]^n
..= lim(n→∞) 1 / [(n+1)/n]^n
..= lim(n→∞) 1 / (1 + 1/n)^n
..= 1/e, by the limit definition of e.
How do I find the limit of this term?
$$\lim_{{n}\to{\infty}}|\left(\frac{n}{n+1}\right)^{\!{n^2}}|^\frac{1}{n}$$
This is the working but I don't understand how to get the third line.
r = lim(n→∞) |[n/(n+1)]^(n^2)|^(1/n)
..= lim(n→∞) [n/(n+1)]^n
..= lim(n→∞) 1 / [(n+1)/n]^n
..= lim(n→∞) 1 / (1 + 1/n)^n
..= 1/e, by the limit definition of e.