- #1
Nusc
- 760
- 2
First Order Linear Non-Homogeneous Equation
I need to solve for e(t)
Do I use Laplace Transform for the last integral?
[tex]
\begin{subequations}
\begin{eqnarray}
\nonumber
\dot{\hat{{\cal E}}}(t) &=& -\kappa \hat{{\cal E}}(t) + \sqrt{2\kappa}\, \hat{{\cal E}}_{in}(t), \\
\end{eqnarray}
\end{subequations}
\begin{subequations}
\begin{eqnarray}
\dot{\hat{{\cal E}}} &=& -\kappa \hat{{\cal E}} + \sqrt{2\kappa}\, \hat{{\cal E}}_{in}, \\
\nonumber
I &=& e^{\int \kappa dt} =ce^{\kappa t}\\
\nonumber
ce^{\kappa t}\dot{\hat{{\cal E}}} + ce^{\kappa t}\kappa \hat{{\cal E}} &=& ce^{\kappa t} \sqrt{2\kappa}\, \hat{{\cal E}}_{in}, \\
\nonumber
\frac{d}{dt}(\hat{{\cal E}}e^{ \kappa t}) &=& ce^{\kappa t} \sqrt{2\kappa}\, \hat{{\cal E}}_{in}\\
\nonumber
\hat{{\cal E}}e^{ \kappa t} &=& \int^{\infty}_{0}ce^{\kappa t} \sqrt{2\kappa}\, \hat{{\cal E}}_{in}(t)dt\\
\nonumber
\nonumber
\end{eqnarray}
\end{subequations}
[/tex]
Homework Statement
I need to solve for e(t)
Homework Equations
Do I use Laplace Transform for the last integral?
The Attempt at a Solution
[tex]
\begin{subequations}
\begin{eqnarray}
\nonumber
\dot{\hat{{\cal E}}}(t) &=& -\kappa \hat{{\cal E}}(t) + \sqrt{2\kappa}\, \hat{{\cal E}}_{in}(t), \\
\end{eqnarray}
\end{subequations}
\begin{subequations}
\begin{eqnarray}
\dot{\hat{{\cal E}}} &=& -\kappa \hat{{\cal E}} + \sqrt{2\kappa}\, \hat{{\cal E}}_{in}, \\
\nonumber
I &=& e^{\int \kappa dt} =ce^{\kappa t}\\
\nonumber
ce^{\kappa t}\dot{\hat{{\cal E}}} + ce^{\kappa t}\kappa \hat{{\cal E}} &=& ce^{\kappa t} \sqrt{2\kappa}\, \hat{{\cal E}}_{in}, \\
\nonumber
\frac{d}{dt}(\hat{{\cal E}}e^{ \kappa t}) &=& ce^{\kappa t} \sqrt{2\kappa}\, \hat{{\cal E}}_{in}\\
\nonumber
\hat{{\cal E}}e^{ \kappa t} &=& \int^{\infty}_{0}ce^{\kappa t} \sqrt{2\kappa}\, \hat{{\cal E}}_{in}(t)dt\\
\nonumber
\nonumber
\end{eqnarray}
\end{subequations}
[/tex]
Last edited: