- #1
kingwinner
- 1,270
- 0
"Consider a first order linear PDE. (e.g. y ux + x uy = 0)
If u(x,y) is constant along the curves y2 - x2 = c, then this implies that the general solution to the PDE is u(x,y) = f(y2 - x2) where f is an arbitrary differentiable funciton of one variable. We call the curves along which u(x,y) is constant the characteristic curves."
===============================
I don't understand the implication above highlighted in red. The idea of characteristic curves seems to be very important in solving first order linear PDEs, but I am never able to completely understand the idea of it. Why would finding the characteristic curves help us find the general solution to the PDE?
Thanks for explaining!
If u(x,y) is constant along the curves y2 - x2 = c, then this implies that the general solution to the PDE is u(x,y) = f(y2 - x2) where f is an arbitrary differentiable funciton of one variable. We call the curves along which u(x,y) is constant the characteristic curves."
===============================
I don't understand the implication above highlighted in red. The idea of characteristic curves seems to be very important in solving first order linear PDEs, but I am never able to completely understand the idea of it. Why would finding the characteristic curves help us find the general solution to the PDE?
Thanks for explaining!
Last edited: