- #1
cloud18
- 8
- 0
Find the solution (in integral form) of the equation:
[tex]
u(x+1,t) - 2u(x,t) + u(x-1,t) = u_t
[/tex]
[tex]u(x,0) = f(x)[/tex]
Hint: Use the shift formula
[tex]
F[f(ax-b)] = \frac{\exp{i\omega b/a}}{|a|} \overline{f}(\omega/a)
[/tex]
So I took the Fourier transform of each term using the shift formula:
[tex]
\exp{(-i\omega)} \overline{u} - 2\overline{u} + \exp{(i\omega)}\overline{u} = \overline{u}_t
[/tex]
But I don't think this is correct thus far...
[tex]
u(x+1,t) - 2u(x,t) + u(x-1,t) = u_t
[/tex]
[tex]u(x,0) = f(x)[/tex]
Hint: Use the shift formula
[tex]
F[f(ax-b)] = \frac{\exp{i\omega b/a}}{|a|} \overline{f}(\omega/a)
[/tex]
So I took the Fourier transform of each term using the shift formula:
[tex]
\exp{(-i\omega)} \overline{u} - 2\overline{u} + \exp{(i\omega)}\overline{u} = \overline{u}_t
[/tex]
But I don't think this is correct thus far...
Last edited: