- #36
ehild
Homework Helper
- 15,542
- 1,917
The answers become clear when we write the equations for the motion of the CM and point A in general. In this case, the string encloses the angle φ with the vertical while the beam encloses angle θ. Let be the length of the beam 2L, and r the length of the string.
xA=rsin(φ), yA=rcos(φ)
##\ddot x_A=−rsin(φ){\dot φ}^2+rcos(φ)\ddot φ##, ##\ddot y_A=−rcos(φ){\dot φ}^2−rsin(φ)\ddot φ##
At t=0+, φ=0, ##\dot φ=0##, so ##\ddot x_A=r\ddot φ##, ##\ddot y_A=0##, point A accelerates in horizontal direction.
##X_{CM}=L\sin(θ)+rsin(φ)##, ##Y_{CM}=L\cos(θ)+r\cos(φ)##
##\ddot X_{CM}=-L\sin(θ){\dot θ}^2+L\cos(θ)\ddotθ-r\sin(φ){\dot φ}^2+r\cos(φ)\ddotφ##
##\ddot Y_{CM}=-L\cos(θ){\dot θ}^2-L\sin(θ)\ddot θ-r\cos(φ){\dot φ}^2-r\sin(φ)\ddotφ##
At t=0, ##\ddot X_{CM}=L\cos(θ)\ddot θ+r\ddot φ##, ##\ddot Y_{CM}=-L\cos(θ)\ddot θ##
For the translation of the CM:
##m\ddot X_{CM}=-T\sin (φ)##
##m\ddot Y_{CM}=-T\cos (φ)+mg##
The torque equation with respect to the CM:
##TLsin(θ-φ)=-\frac{1}{3}mL^2 \ddot θ##.
At t=0:
##\ddot X_{CM}=0##, ##\ddot Y_{CM}=-T+mg##
##TLsin(θ)=-\frac{1}{3}mL^2 \ddot θ##.
T can be eliminated, ##\ddot θ##and ##\ddot φ## determined for t=0.
xA=rsin(φ), yA=rcos(φ)
##\ddot x_A=−rsin(φ){\dot φ}^2+rcos(φ)\ddot φ##, ##\ddot y_A=−rcos(φ){\dot φ}^2−rsin(φ)\ddot φ##
At t=0+, φ=0, ##\dot φ=0##, so ##\ddot x_A=r\ddot φ##, ##\ddot y_A=0##, point A accelerates in horizontal direction.
##X_{CM}=L\sin(θ)+rsin(φ)##, ##Y_{CM}=L\cos(θ)+r\cos(φ)##
##\ddot X_{CM}=-L\sin(θ){\dot θ}^2+L\cos(θ)\ddotθ-r\sin(φ){\dot φ}^2+r\cos(φ)\ddotφ##
##\ddot Y_{CM}=-L\cos(θ){\dot θ}^2-L\sin(θ)\ddot θ-r\cos(φ){\dot φ}^2-r\sin(φ)\ddotφ##
At t=0, ##\ddot X_{CM}=L\cos(θ)\ddot θ+r\ddot φ##, ##\ddot Y_{CM}=-L\cos(θ)\ddot θ##
For the translation of the CM:
##m\ddot X_{CM}=-T\sin (φ)##
##m\ddot Y_{CM}=-T\cos (φ)+mg##
The torque equation with respect to the CM:
##TLsin(θ-φ)=-\frac{1}{3}mL^2 \ddot θ##.
At t=0:
##\ddot X_{CM}=0##, ##\ddot Y_{CM}=-T+mg##
##TLsin(θ)=-\frac{1}{3}mL^2 \ddot θ##.
T can be eliminated, ##\ddot θ##and ##\ddot φ## determined for t=0.