- #1
trap
- 53
- 0
Can someone help me with this question? gladly appreciate any help on this
Suppose f is continuous. Prove that
[tex]\int_0^{x} f(u)(x-u) du = [/tex][tex]\int_0^{x}[/tex] ( [tex]\int_0^{u} f(t) dt[/tex]) du.
Suppose f is continuous. Prove that
[tex]\int_0^{x} f(u)(x-u) du = [/tex][tex]\int_0^{x}[/tex] ( [tex]\int_0^{u} f(t) dt[/tex]) du.
Last edited: