- #1
Klaus_Hoffmann
- 86
- 1
let be the operator involving an infinite-dimensional ODE
[tex] f( \partial _{x}) y(x)=h(x) [/tex]
then if h(x)=0 i make the ansatz [tex] y(x)=e^{ax} [/tex] so
[tex] \sum_{\rho } e^{x\rho} [/tex] [tex] f(\rho) =0 [/tex]
for h(x) different from '0' we construct an orthonormal basis with the solutions given above to give an expression on the interval (0,c)
Another question,.. can we give a 'meaning' to the expression.
[tex] G(x,y)= \int dV \frac{e^{ik|x-y|}{E-Ak^{2}-V(\partial _{k})} [/tex]
[tex] f( \partial _{x}) y(x)=h(x) [/tex]
then if h(x)=0 i make the ansatz [tex] y(x)=e^{ax} [/tex] so
[tex] \sum_{\rho } e^{x\rho} [/tex] [tex] f(\rho) =0 [/tex]
for h(x) different from '0' we construct an orthonormal basis with the solutions given above to give an expression on the interval (0,c)
Another question,.. can we give a 'meaning' to the expression.
[tex] G(x,y)= \int dV \frac{e^{ik|x-y|}{E-Ak^{2}-V(\partial _{k})} [/tex]