- #36
- 8,943
- 2,949
N88 said:Please: What is X?
We start here:
(1) ##-[A(\vec{a},\lambda)A(\vec{b},\lambda)-A(\vec{a},\lambda)A(\vec{c},\lambda)]##; under an integral.
IF X (a mathematical expression, explained in words; preferably something suggested by Einstein or EPR)
THEN (by Bell's equality):
(1) ##=## (2) ##=A(\vec{a},\lambda)A(\vec{b},\lambda)[A(\vec{b},\lambda)A(\vec{c},\lambda)-1]##; under an integral. QED.
Thank you.
[itex]X[/itex] is just algebra.
Once again:
Since [itex]A(\vec{b}, \lambda) = \pm 1[/itex], then [itex]A(\vec{b}, \lambda) A(\vec{b}, \lambda) = +1[/itex]. So we can write:
[itex]- (A(\vec{a}, \lambda) A(\vec{b}, \lambda) - A(\vec{a},\lambda) A(\vec{c},\lambda)) = - (A(\vec{a}, \lambda) A(\vec{b}, \lambda) - A(\vec{a},\lambda) A(\vec{b}, \lambda) A(\vec{b}, \lambda) A(\vec{c},\lambda))[/itex]
Now, we can factor out [itex]A(\vec{a},\lambda) A(\vec{b}, \lambda)[/itex]:
[itex]- (A(\vec{a}, \lambda) A(\vec{b}, \lambda) - A(\vec{a},\lambda) A(\vec{c},\lambda)) = - A(\vec{a}, \lambda) A(\vec{b}, \lambda) (1 - A(\vec{b}, \lambda) A(\vec{c},\lambda))[/itex]