- #1
iAlexN
- 16
- 0
An "infinite potential box"
This equation describes a particle in an "infinite potential box" with the width L, i.e.:
Note that I do not know if it would be called an infinite potential box in English, but basically the particle can only be found within this space; outside of this the potential is [itex]\infty[/itex]
<x|n> = [itex]\Psi_{n}[/itex](x)=[itex]\sqrt{\frac{2}{L}}[/itex][itex]\ast[/itex]sin([itex]\frac{n*pi*x}{L}[/itex])
0<x<L
I have the following energy states for the particle, E[itex]_{1}[/itex] and E[itex]_{3}[/itex],
[itex]\varphi[/itex]=[itex]\frac{1}{\sqrt{2}}[/itex][itex]\ast[/itex](|1>+|3>)
Which means that it must be found in either E[itex]_{1}[/itex] and E[itex]_{3}[/itex]
The question is:
How will the probability of finding the particle change depending on time?
I am not entirely sure how to solve this problem. I start like this:
[itex]\Psi_{1}[/itex](x,t)=e[itex]^{-i*E_{1}*t/\hbar}[/itex]*[itex]\Psi_{1}[/itex](x,0) =[itex]\sqrt{\frac{2}{L}}[/itex][itex]\ast[/itex]sin([itex]\frac{1*pi*x}{L}[/itex])*e[itex]^{-i*E_{1}*t/\hbar}[/itex]
[itex]\Psi_{3}[/itex](x,t)=e[itex]^{-i*E_{3}*t/\hbar}[/itex]*[itex]\Psi_{3}[/itex](x,0) =[itex]\sqrt{\frac{2}{L}}[/itex][itex]\ast[/itex]sin([itex]\frac{3*pi*x}{L}[/itex])*e[itex]^{-i*E_{3}*t/\hbar}[/itex]
Inserting this into: [itex]\varphi[/itex]=[itex]\frac{1}{\sqrt{2}}[/itex][itex]\ast[/itex](|1>+|3>)
Gives (simplified):
[itex]\varphi[/itex](x,t)=[itex]\frac{1}{\sqrt{L}}[/itex][itex]\ast[/itex](e[itex]^{-i*E_{1}*t/\hbar}[/itex]*sin([itex]\frac{1*pi*x}{L}[/itex])+e[itex]^{-i*E_{3}*t/\hbar}[/itex]*sin([itex]\frac{3*pi*x}{L}[/itex]))
|[itex]\varphi[/itex](x,t)|[itex]^{2}[/itex]: I think this would give me how the probability changes over time, but I am not sure mathematically how this should be expressed or determined, because [itex]\varphi[/itex](x,t) is a big expression; assuming this is the right way to solve this problem.
Thank you in advance!
Oh, and since this is my first post on this forum I am not sure if this would qualify to be placed in "Advanced Physics", so feel free to move it to another category.
This equation describes a particle in an "infinite potential box" with the width L, i.e.:
Note that I do not know if it would be called an infinite potential box in English, but basically the particle can only be found within this space; outside of this the potential is [itex]\infty[/itex]
<x|n> = [itex]\Psi_{n}[/itex](x)=[itex]\sqrt{\frac{2}{L}}[/itex][itex]\ast[/itex]sin([itex]\frac{n*pi*x}{L}[/itex])
0<x<L
I have the following energy states for the particle, E[itex]_{1}[/itex] and E[itex]_{3}[/itex],
[itex]\varphi[/itex]=[itex]\frac{1}{\sqrt{2}}[/itex][itex]\ast[/itex](|1>+|3>)
Which means that it must be found in either E[itex]_{1}[/itex] and E[itex]_{3}[/itex]
The question is:
How will the probability of finding the particle change depending on time?
I am not entirely sure how to solve this problem. I start like this:
[itex]\Psi_{1}[/itex](x,t)=e[itex]^{-i*E_{1}*t/\hbar}[/itex]*[itex]\Psi_{1}[/itex](x,0) =[itex]\sqrt{\frac{2}{L}}[/itex][itex]\ast[/itex]sin([itex]\frac{1*pi*x}{L}[/itex])*e[itex]^{-i*E_{1}*t/\hbar}[/itex]
[itex]\Psi_{3}[/itex](x,t)=e[itex]^{-i*E_{3}*t/\hbar}[/itex]*[itex]\Psi_{3}[/itex](x,0) =[itex]\sqrt{\frac{2}{L}}[/itex][itex]\ast[/itex]sin([itex]\frac{3*pi*x}{L}[/itex])*e[itex]^{-i*E_{3}*t/\hbar}[/itex]
Inserting this into: [itex]\varphi[/itex]=[itex]\frac{1}{\sqrt{2}}[/itex][itex]\ast[/itex](|1>+|3>)
Gives (simplified):
[itex]\varphi[/itex](x,t)=[itex]\frac{1}{\sqrt{L}}[/itex][itex]\ast[/itex](e[itex]^{-i*E_{1}*t/\hbar}[/itex]*sin([itex]\frac{1*pi*x}{L}[/itex])+e[itex]^{-i*E_{3}*t/\hbar}[/itex]*sin([itex]\frac{3*pi*x}{L}[/itex]))
|[itex]\varphi[/itex](x,t)|[itex]^{2}[/itex]: I think this would give me how the probability changes over time, but I am not sure mathematically how this should be expressed or determined, because [itex]\varphi[/itex](x,t) is a big expression; assuming this is the right way to solve this problem.
Thank you in advance!
Oh, and since this is my first post on this forum I am not sure if this would qualify to be placed in "Advanced Physics", so feel free to move it to another category.