- #1
Mathitalian
- 28
- 0
Homework Statement
Let
[tex]H= \frac{1}{2}m(V_x^2+V_y^2+V_z^2)+u(\vec{Q})[/tex]
be the hamiltonian operator for a particle which has mass m>0 with
[tex]u(\vec{Q})=\lambda_0 (Q_x^2+ Q_y^2)[/tex].
Knowing that
[tex][Q_\alpha, m V_\beta]=i \delta_{\alpha \beta}[/tex].
Show that If
[tex]\displaystyle A_\alpha= \frac{d V_\alpha^{(t)}}{d t}[/tex]
then
[tex]\displaystyle mA_\alpha = -\frac{\partial u(\vec{Q})}{\partial x_\alpha}[/tex]
Homework Equations
Note that
Q is position operator, V is velocity operator, A is acceleration operator
[tex][A_1, A_2]= A_1 A_2-A_2 A_1[/tex]
The Attempt at a Solution
The problem is equivalent to show that [tex]A_\alpha= -\frac{\partial u(\vec{Q})}{m\partial x_\alpha}[/tex], but it is difficult to me, because of time dependent operator [tex]V_{\alpha}^{(t)}[/tex].
I think that the relation [tex]V_{\alpha}^{(t)}= i U_{t}^{-1}[H, V_{\alpha}]U_t[/tex] is useful. Now
[tex][H, V_\alpha]= [u(\vec{Q}), V_\alpha]= [\lambda_0 (Q_x^2+ Q_y^2), V_\alpha]=\frac{\lambda_0}{m}(2 i (\delta_{\alpha, x}Q_x+ \delta_{\alpha, y}Q_y))= i \frac{\partial u(\vec{Q})}{m x_{\alpha}} [/tex]
So
[tex]V_\alpha^{(t)}=i U_t^{-1}[H, V_\alpha]U_t = - U_t^{-1} \frac{\partial u(\vec{Q})}{m x_\alpha}U_t[/tex].
Now I'm stuck. Any helps will be appreciated. Thank you.
Sorry for mistakes in english language. I'm italian :)
Last edited: