- #1
j777
- 148
- 0
Hi,
I'm working with distributions of weights that are predominently "normal". The weights on the upper end of the distribution are in error and I'd like to find a method that I can use to automatically "chop" off this portion of the distribution. Based on my inexperienced inspection of these distributions it appears as though using the mean +/- the standard deviation as the range for "good" data and throwing everything else away yields a fairly accurate distribution but I'm not convinced that this is the correct/best way of filtering out the bad data.
I'm not a statistics expert so I'm hoping somebody who is can point me in the right direction.
Thanks
I'm working with distributions of weights that are predominently "normal". The weights on the upper end of the distribution are in error and I'd like to find a method that I can use to automatically "chop" off this portion of the distribution. Based on my inexperienced inspection of these distributions it appears as though using the mean +/- the standard deviation as the range for "good" data and throwing everything else away yields a fairly accurate distribution but I'm not convinced that this is the correct/best way of filtering out the bad data.
I'm not a statistics expert so I'm hoping somebody who is can point me in the right direction.
Thanks