- #1
vertices
- 62
- 0
If we have a Lagrangian which looks like this:
[tex]L=\frac{m}{2}g_{ij}(x)\dot{x}^i\dot{x}^j[/tex]
where:
[tex]ds^2=g_{ij}(x)dx^idx^j[/tex]
If we are told that:
[tex]ds^2=d\phi^2 +(sin^2 \phi) d\theta^2[/tex]
How can we show that the Lagrangian is:
[tex]L=\frac{m}{2}[\dot{\phi}^2 +(sin^2 \phi) \dot{\theta}^2][/tex]
Is there a general way of determing the metric from the interval?
Thanks.
[tex]L=\frac{m}{2}g_{ij}(x)\dot{x}^i\dot{x}^j[/tex]
where:
[tex]ds^2=g_{ij}(x)dx^idx^j[/tex]
If we are told that:
[tex]ds^2=d\phi^2 +(sin^2 \phi) d\theta^2[/tex]
How can we show that the Lagrangian is:
[tex]L=\frac{m}{2}[\dot{\phi}^2 +(sin^2 \phi) \dot{\theta}^2][/tex]
Is there a general way of determing the metric from the interval?
Thanks.