- #1
Boromir
- 38
- 0
Prove that if operator on a hilbert space $T$ commutes with an operator $S$ and $T$ is invertible, then $T^{-1}$ commutes with $S$.
$T^{-1}S$=$T^{-1}T^{-1}TS$=$T^{-1}T^{-1}ST$
$T^{-1}S$=$T^{-1}T^{-1}TS$=$T^{-1}T^{-1}ST$