- #1
AxiomOfChoice
- 533
- 1
Suppose [itex]\Omega_1[/itex] and [itex]\Omega_2[/itex] satisfy [itex][\Omega_1,\Omega_2]=0[/itex] and [itex]\Omega = \Omega_1 + \Omega_2[/itex]. If [itex]\Psi_1[/itex] and [itex]\Psi_2[/itex] are eigenvectors of [itex]\Omega_1[/itex] and [itex]\Omega_2[/itex], respectively, don't we know that the (tensor?) product [itex]\Psi = \Psi_1 \Psi_2[/itex] is an eigenvector of [itex]\Omega[/itex]? Also, if the [itex]\Psi_i[/itex] are normalized, isn't [itex]\Psi[/itex] automatically normalized?