Implied Dom/Ran = tan(2arcsin(x))

  • Thread starter W0rr13d-0n3
  • Start date
Just one thing to note: when you say "Restricting dom(g) so that ran(g) = [-\pi,\pi] \ {\pm\frac{\pi}{2}}," it's not really the same thing as saying "dom(g) = [-1,1]\{\pm\frac{1}{\sqrt{2}}}". I think it would be more accurate to say something like "restricting the domain of g to a subset of [-1,1] so that the range is [-\pi,\pi] \ {\pm\frac{\pi}{2}}." But your final answer is correct.
  • #1
W0rr13d-0n3
4
0

Homework Statement



State the implied domain and range of y= tan(2arcsin(x))

The Attempt at a Solution



Let g : [-1,1] [itex]\rightarrow[/itex] [-[itex]\pi[/itex],[itex]\pi[/itex]] , be the function g(x) = 2arcsin(x)

Let f : (-[itex]\frac{\pi}{2}[/itex],[itex]\frac{\pi}{2}[/itex]) [itex]\rightarrow[/itex] R, be the function f(x) = tan(x)

So, (f[itex]\circ[/itex]g)(x) = tan(2arcsin(x))

ran(g) [itex]\cap[/itex] dom(f) = [-[itex]\pi[/itex],[itex]\pi[/itex]] [itex]\cap[/itex] (-[itex]\frac{\pi}{2}[/itex],[itex]\frac{\pi}{2}[/itex]) = (-[itex]\frac{\pi}{2}[/itex],[itex]\frac{\pi}{2}[/itex])

Restricting dom(g) so that ran(g) = (-[itex]\frac{\pi}{2}[/itex],[itex]\frac{\pi}{2}[/itex]),

= -[itex]\frac{\pi}{2}[/itex] < 2arcsin(x) < [itex]\frac{\pi}{2}[/itex]

= -[itex]\frac{\pi}{4}[/itex] < arcsin(x) < [itex]\frac{\pi}{4}[/itex]

= -[itex]\frac{1}{\sqrt{2}}[/itex] < x < [itex]\frac{1}{\sqrt{2}}[/itex]

Hence, ran(f[itex]\circ[/itex]g)(x) = R

Hence, dom(f[itex]\circ[/itex]g)(x) = [-[itex]\frac{1}{\sqrt{2}}[/itex],[itex]\frac{1}{\sqrt{2}}[/itex]]
But the above answer (implied domain of f(g(x))) is wrong.

Note : The answer given to me is [-1,1]\{[itex]\pm[/itex][itex]\frac{1}{\sqrt{2}}[/itex]}. It kind of scares me how far off my answer is...

Using the above method (I draw a visual aid to help me...), I seemed to have no problems finding implied dom/ran for other equations such as y = arcsin(1 - x), y = arccos(2x + 3), y = arctan(4 - x), y = arccos(sin(2x)), etc.

Any help will definitely be appreciated ^_^... I've been pondering about this question for an hour+...
Calculus really scares me sometimes =(
 
Last edited:
Physics news on Phys.org
  • #2
You got the domain for f wrong. For example, tan x is defined at [itex]x=\pi[/itex], right? So the domain of f can't be only [itex](-\frac{\pi}{2},\frac{\pi}{2})[/itex].
 
  • #3
vela said:
You got the domain for f wrong. For example, tan x is defined at [itex]x=\pi[/itex], right? So the domain of f can't be only [itex](-\frac{\pi}{2},\frac{\pi}{2})[/itex].

Thanks for that =). I'm always forgetting to show the full domain in my trig functions...
But, it seems that I'm still a little stuck with the implied domain =(

Homework Statement



State the implied domain and range of y= tan(2arcsin(x))

The Attempt at a Solution



Let g : [-1,1] [itex]\rightarrow[/itex] [-[itex]\pi[/itex],[itex]\pi[/itex]] , be the function g(x) = 2arcsin(x)

Let f : (-[itex]\frac{\pi}{2}[/itex] + k[itex]\pi[/itex],[itex]\frac{\pi}{2}[/itex] + k[itex]\pi[/itex]), where k [itex]\in[/itex] Z [itex]\rightarrow[/itex] R, be the function f(x) = tan(x)

So, (f[itex]\circ[/itex]g)(x) = tan(2arcsin(x))

ran(g) [itex]\cap[/itex] dom(f) = [-[itex]\pi[/itex],[itex]\pi[/itex]] [itex]\cap[/itex] (-[itex]\frac{\pi}{2}[/itex] + k[itex]\pi[/itex],[itex]\frac{\pi}{2}[/itex] + k[itex]\pi[/itex]), where k [itex]\in[/itex] Z = (-[itex]\frac{\pi}{2}[/itex],[itex]\frac{\pi}{2}[/itex])

Restricting dom(g) so that ran(g) = (-[itex]\frac{\pi}{2}[/itex],[itex]\frac{\pi}{2}[/itex]),

= -[itex]\frac{\pi}{2}[/itex] < 2arcsin(x) < [itex]\frac{\pi}{2}[/itex]

= -[itex]\frac{\pi}{4}[/itex] < arcsin(x) < [itex]\frac{\pi}{4}[/itex]

= -[itex]\frac{1}{\sqrt{2}}[/itex] < x < [itex]\frac{1}{\sqrt{2}}[/itex]

Hence, ran(f[itex]\circ[/itex]g)(x) = R

Hence, dom(f[itex]\circ[/itex]g)(x) = [-[itex]\frac{1}{\sqrt{2}}[/itex],[itex]\frac{1}{\sqrt{2}}[/itex]]

But implied domain is wrong... Answer given = [-1,1]\{[itex]\pm[/itex][itex]\frac{1}{\sqrt{2}}[/itex]}
 
Last edited:
  • #4
Your domain for f is still wrong. Tangent is defined for all real numbers except odd multiples of π/2. Just picture a number line with holes at ±π/2, ±/2, ... What do you get when you take the intersection of that an [-π/2,π/2]?
 
  • #5
Fingers crossed...
f : R \ {k[itex]\pi[/itex] + [itex]\frac{\pi}{2}[/itex]}, where k [itex]\in[/itex] Z [itex]\rightarrow[/itex] R, f(x) = tan(x)?

Homework Statement



State the implied domain and range of y= tan(2arcsin(x))

The Attempt at a Solution



Let g : [-1,1] [itex]\rightarrow[/itex] [-[itex]\pi[/itex],[itex]\pi[/itex]] , be the function g(x) = 2arcsin(x)

Let f : R \ {k[itex]\pi[/itex] + [itex]\frac{\pi}{2}[/itex]}, where k [itex]\in[/itex] Z [itex]\rightarrow[/itex] R, be the function f(x) = tan(x)

So, (f[itex]\circ[/itex]g)(x) = tan(2arcsin(x))

ran(g) [itex]\cap[/itex] dom(f) = [-[itex]\pi[/itex],[itex]\pi[/itex]] [itex]\cap[/itex] R \ {k[itex]\pi[/itex] + [itex]\frac{\pi}{2}[/itex]}, where k [itex]\in[/itex] Z = (-[itex]\frac{\pi}{2}[/itex],[itex]\frac{\pi}{2}[/itex])

Restricting dom(g) so that ran(g) = (-[itex]\frac{\pi}{2}[/itex],[itex]\frac{\pi}{2}[/itex]),

= -[itex]\frac{\pi}{2}[/itex] < 2arcsin(x) < [itex]\frac{\pi}{2}[/itex]

= -[itex]\frac{\pi}{4}[/itex] < arcsin(x) < [itex]\frac{\pi}{4}[/itex]

= -[itex]\frac{1}{\sqrt{2}}[/itex] < x < [itex]\frac{1}{\sqrt{2}}[/itex]

Hence, ran(f[itex]\circ[/itex]g)(x) = R

Hence, dom(f[itex]\circ[/itex]g)(x) = [-[itex]\frac{1}{\sqrt{2}}[/itex],[itex]\frac{1}{\sqrt{2}}[/itex]]

But implied domain is wrong... Answer given = [-1,1]\{[itex]\pm[/itex][itex]\frac{1}{\sqrt{2}}[/itex]}

EDIT : My apologies.. made a number of errors
 
Last edited:
  • #6
W0rr13d-0n3 said:
Restricting dom(g) so that ran(g) = (-[itex]\frac{\pi}{2}[/itex],[itex]\frac{\pi}{2}[/itex])
Why are you restricting the domain of g this way? The intersection of [itex][-\pi,\pi][/itex] and the domain of tan x isn't [itex](-\pi/2,\pi/2)[/itex].
 
  • #7
vela said:
Why are you restricting the domain of g this way? The intersection of [itex][-\pi,\pi][/itex] and the domain of tan x isn't [itex](-\pi/2,\pi/2)[/itex].

Ah! Now I'm seeing (to some degree at least), how neglecting the full domain of tan(x) is leading me to my wrong answer.. I hope this attempt is correct now...

Homework Statement



State the implied domain and range of y= tan(2arcsin(x))

The Attempt at a Solution



Let g : [-1,1] [itex]\rightarrow[/itex] [-[itex]\pi[/itex],[itex]\pi[/itex]] , be the function g(x) = 2arcsin(x)

Let f : R \ {k[itex]\pi[/itex] + [itex]\frac{\pi}{2}[/itex]}, where k [itex]\in[/itex] Z [itex]\rightarrow[/itex] R, be the function f(x) = tan(x)

So, (f[itex]\circ[/itex]g)(x) = tan(2arcsin(x))

ran(g) [itex]\cap[/itex] dom(f) = [-[itex]\pi[/itex],[itex]\pi[/itex]] [itex]\cap[/itex] R \ {k[itex]\pi[/itex] + [itex]\frac{\pi}{2}[/itex]}, where k [itex]\in[/itex] Z = [-[itex]\pi[/itex],[itex]\pi[/itex]] \ {[itex]\pm[/itex][itex]\frac{\pi}{2}[/itex]}

Restricting dom(g) so that ran(g) = [-[itex]\pi[/itex],[itex]\pi[/itex]] \ {[itex]\pm[/itex][itex]\frac{\pi}{2}[/itex]},

= 2arcsin(x) [itex]\neq[/itex] [itex]\pm[/itex][itex]\frac{\pi}{2}[/itex]

= arcsin(x) [itex]\neq[/itex] [itex]\pm[/itex][itex]\frac{\pi}{4}[/itex]

= x [itex]\neq[/itex] [itex]\frac{1}{\sqrt{2}}[/itex]

Hence, ran(f[itex]\circ[/itex]g)(x) = R

Hence, dom(f[itex]\circ[/itex]g)(x) = [-1,1]\{[itex]\pm[/itex][itex]\frac{1}{\sqrt{2}}[/itex]}

And it matches the given answer of = [-1,1]\{[itex]\pm[/itex][itex]\frac{1}{\sqrt{2}}[/itex]}

Thanks A LOT for your help... Umm, unless I'm still not done yet (my working has errors)...
 
  • #8
Looks good!
 

FAQ: Implied Dom/Ran = tan(2arcsin(x))

What is implied dom/ran?

Implied dom/ran refers to the domain and range of a mathematical function that is not explicitly stated in the given equation. In other words, it is the implied values of x and y that satisfy the equation.

What is the meaning of tan(2arcsin(x))?

Tan(2arcsin(x)) is a trigonometric function that represents the tangent of twice the inverse sine of x. In simpler terms, it is the ratio of the opposite side to the adjacent side in a right triangle with an angle of 2 times the inverse sine of x.

How do you find the implied dom/ran of tan(2arcsin(x))?

To find the implied dom/ran of tan(2arcsin(x)), we can use the properties of inverse trigonometric functions. The domain is restricted to values of x between -1 and 1, while the range is all real numbers.

Can the equation tan(2arcsin(x)) be simplified?

Yes, tan(2arcsin(x)) can be simplified using trigonometric identities. For example, it can be rewritten as 2x/√(1-x^2). However, it is important to note that the domain and range of the simplified equation may differ from the original equation.

What is the significance of the equation tan(2arcsin(x))?

The equation tan(2arcsin(x)) has several applications in mathematics and physics. It is commonly used in the calculation of angles and distances in right triangles, as well as in the study of circular motion and harmonic motion. It also has applications in fields such as engineering, navigation, and astronomy.

Similar threads

Replies
3
Views
1K
Replies
17
Views
2K
Replies
14
Views
2K
Replies
3
Views
1K
Replies
15
Views
3K
Replies
6
Views
1K
Back
Top