- #1
W0rr13d-0n3
- 4
- 0
Homework Statement
State the implied domain and range of y= tan(2arcsin(x))
The Attempt at a Solution
Let g : [-1,1] [itex]\rightarrow[/itex] [-[itex]\pi[/itex],[itex]\pi[/itex]] , be the function g(x) = 2arcsin(x)
Let f : (-[itex]\frac{\pi}{2}[/itex],[itex]\frac{\pi}{2}[/itex]) [itex]\rightarrow[/itex] R, be the function f(x) = tan(x)
So, (f[itex]\circ[/itex]g)(x) = tan(2arcsin(x))
ran(g) [itex]\cap[/itex] dom(f) = [-[itex]\pi[/itex],[itex]\pi[/itex]] [itex]\cap[/itex] (-[itex]\frac{\pi}{2}[/itex],[itex]\frac{\pi}{2}[/itex]) = (-[itex]\frac{\pi}{2}[/itex],[itex]\frac{\pi}{2}[/itex])
Restricting dom(g) so that ran(g) = (-[itex]\frac{\pi}{2}[/itex],[itex]\frac{\pi}{2}[/itex]),
= -[itex]\frac{\pi}{2}[/itex] < 2arcsin(x) < [itex]\frac{\pi}{2}[/itex]
= -[itex]\frac{\pi}{4}[/itex] < arcsin(x) < [itex]\frac{\pi}{4}[/itex]
= -[itex]\frac{1}{\sqrt{2}}[/itex] < x < [itex]\frac{1}{\sqrt{2}}[/itex]
Hence, ran(f[itex]\circ[/itex]g)(x) = R
Hence, dom(f[itex]\circ[/itex]g)(x) = [-[itex]\frac{1}{\sqrt{2}}[/itex],[itex]\frac{1}{\sqrt{2}}[/itex]]
But the above answer (implied domain of f(g(x))) is wrong.
Note : The answer given to me is [-1,1]\{[itex]\pm[/itex][itex]\frac{1}{\sqrt{2}}[/itex]}. It kind of scares me how far off my answer is...
Using the above method (I draw a visual aid to help me...), I seemed to have no problems finding implied dom/ran for other equations such as y = arcsin(1 - x), y = arccos(2x + 3), y = arctan(4 - x), y = arccos(sin(2x)), etc.
Any help will definitely be appreciated ^_^... I've been pondering about this question for an hour+...
Calculus really scares me sometimes =(
Last edited: