- #1
unscientific
- 1,734
- 13
Hi guys, I'm not sure how to evaluate this inner product at step (3.8)
I know that:
##\hat {H} |\phi> = E |\phi>##
[tex] <E_n|\frac{\hat H}{\hbar \omega} + \frac{1}{2}|E_n> [/tex]
[tex] <E_n| \frac{\hat H}{\hbar \omega}|E_n> + <E_n|\frac{1}{2}|E_n> [/tex]
I also know that ##<\psi|\hat Q | \psi>## gives the average value of observable to ##\hat Q##. In this case, it's not ##\psi## but ##E_n##, does the same principle hold?
I know that:
##\hat {H} |\phi> = E |\phi>##
[tex] <E_n|\frac{\hat H}{\hbar \omega} + \frac{1}{2}|E_n> [/tex]
[tex] <E_n| \frac{\hat H}{\hbar \omega}|E_n> + <E_n|\frac{1}{2}|E_n> [/tex]
I also know that ##<\psi|\hat Q | \psi>## gives the average value of observable to ##\hat Q##. In this case, it's not ##\psi## but ##E_n##, does the same principle hold?
Last edited: