- #1
Lucid Dreamer
- 25
- 0
I came across this integral of a vector valued function.
[tex] \int \mathbf A(t) \vec{w(t)} dt = \int \mathbf B(t) [/tex].
I want to isolate [itex] \vec{w(t)} [/itex] and so I multiply by [itex] \left (\int \mathbf A(t) dt \right)^{-1} [/itex] on both sides.
[tex] \left (\int \mathbf A(t) dt \right)^{-1} \int \mathbf A(t) \vec{w(t)} dt = \left (\int \mathbf A(t) dt\right)^{-1} \int \mathbf B(t) dt [/tex]
I thought the correct form would be
[tex] \int \vec{w(t)} dt = \left (\int \mathbf A(t) dt\right)^{-1} \int \mathbf B(t) dt [/tex].
But it turns out I get the right answer if I take
[tex] \vec{w(t)} = \left (\int \mathbf A(t) dt \right)^{-1} \int \mathbf B(t) dt [/tex].
Can anyone show why the second form is correct?
[tex] \int \mathbf A(t) \vec{w(t)} dt = \int \mathbf B(t) [/tex].
I want to isolate [itex] \vec{w(t)} [/itex] and so I multiply by [itex] \left (\int \mathbf A(t) dt \right)^{-1} [/itex] on both sides.
[tex] \left (\int \mathbf A(t) dt \right)^{-1} \int \mathbf A(t) \vec{w(t)} dt = \left (\int \mathbf A(t) dt\right)^{-1} \int \mathbf B(t) dt [/tex]
I thought the correct form would be
[tex] \int \vec{w(t)} dt = \left (\int \mathbf A(t) dt\right)^{-1} \int \mathbf B(t) dt [/tex].
But it turns out I get the right answer if I take
[tex] \vec{w(t)} = \left (\int \mathbf A(t) dt \right)^{-1} \int \mathbf B(t) dt [/tex].
Can anyone show why the second form is correct?
Last edited: