- #1
invictor
- 6
- 0
[itex]\int(x^{2}-5)^{2}x dx[/itex]
By substiution:
1. [itex]u = x^{2}-5[/itex]
2. [itex]du = 2x dx[/itex]
3. [itex]\frac{du}{2x}= dx[/itex]
4. [itex]\int u^{2}x \frac{du}{2x}[/itex]
5. [itex]\int u^{2} \frac{1}{2} du[/itex]
6. [itex] \frac{1}{3} u^{3} \frac{1}{2}[/itex]
7. [itex] \frac{1}{6} u^{3}[/itex]
8. [itex] \frac{1}{6} (x^{2}-5)^{3}[/itex]
9. [itex] \frac{1}{6} [x^{6} - 15x^{4} + 75x^{2} +125][/itex]By normal integration factorize the from beginning
from: [itex]\int(x^{2}-5)^{2}x dx[/itex]to [itex]\int [x^{4} - 10x^{2} + 25 ] x dx[/itex]
then: [itex]\int x^{5} - 10x^{3} + 25x dx[/itex]
and finally : [itex] \frac{1}{6} [x^{6} - 15x^{4} + 75x^{2}] + C[/itex]Probably this is a easy one, i been looking on internet, but had hard time to find the right keywords for an explanation...
Question is: the one give me some kind of constant and the other i just add one.. Which one is correct? I mean both gives same result except of one provide a "real" constant value.
By substiution:
1. [itex]u = x^{2}-5[/itex]
2. [itex]du = 2x dx[/itex]
3. [itex]\frac{du}{2x}= dx[/itex]
4. [itex]\int u^{2}x \frac{du}{2x}[/itex]
5. [itex]\int u^{2} \frac{1}{2} du[/itex]
6. [itex] \frac{1}{3} u^{3} \frac{1}{2}[/itex]
7. [itex] \frac{1}{6} u^{3}[/itex]
8. [itex] \frac{1}{6} (x^{2}-5)^{3}[/itex]
9. [itex] \frac{1}{6} [x^{6} - 15x^{4} + 75x^{2} +125][/itex]By normal integration factorize the from beginning
from: [itex]\int(x^{2}-5)^{2}x dx[/itex]to [itex]\int [x^{4} - 10x^{2} + 25 ] x dx[/itex]
then: [itex]\int x^{5} - 10x^{3} + 25x dx[/itex]
and finally : [itex] \frac{1}{6} [x^{6} - 15x^{4} + 75x^{2}] + C[/itex]Probably this is a easy one, i been looking on internet, but had hard time to find the right keywords for an explanation...
Question is: the one give me some kind of constant and the other i just add one.. Which one is correct? I mean both gives same result except of one provide a "real" constant value.
Last edited: