- #1
MI5
- 8
- 0
My question concerns proving the set of non-negative integers of the form $a-dx ~~(a, d, x \in \mathbb{Z}, d \ge 1)$ is nonempty. This is the proof from my book. If $a \ge 0$, then $a = a-d\cdot 0 \in S$. If $a < 0$, let $x = -y$ where $y$ is a positive integer. Since $d$ is positive, we have $a-dx = a+dy \in S$ for sufficiently large $y$. Thus $S$ is nonempty.
Could someone explain sentence that I've bolded? It's not clear to me.
Could someone explain sentence that I've bolded? It's not clear to me.