- #1
gtfitzpatrick
- 379
- 0
Homework Statement
write down the Lagrange-Charpit eqs for
[tex] \frac{ \partial u}{ \partial x} \frac{ \partial u}{ \partial y} - y \frac{ \partial u}{ \partial x} - x \frac{ \partial u}{ \partial y}= 0 [/tex]
and use them to show [tex] \frac{ d^2 p}{ d p^2} = P [/tex]
assuming that u = x^2 when y=0 determine the characteristic curves (x(t),y(t))
The Attempt at a Solution
so out eq gives pq-yp-xq = 0 so F(x,y,u,p,q) = pq-yp-xq
so
F_x = -q
F_y = -p
F_p = q-y
F_q = p-x
F_u = 0
so the char. eqs are
[tex] \frac{ dx}{ dt} [/tex] = q-y
[tex] \frac{ dy}{ dt} [/tex] = p-x
[tex] \frac{ dx}{ dt} [/tex] = qp
[tex] \frac{ dx}{ dt} [/tex] = q
[tex] \frac{ dx}{ dt} [/tex] = p
so [tex] \frac{ dx}{ dt} [/tex] = q-p but then [tex]{ d^2 p}{ d p^2} = 0 [/tex]? what am i doing wrong, any ideas anyone?