- #1
coffeebean51
- 6
- 0
how do you integrate [tex]\frac{dy}{dx}=4x-2y[/tex].
I don't know if this is right, but this is where I'm going with this:
[tex]y'=4x-2y[/tex]
[tex]y'+2y=4x[/tex]
Solving homogeneous for complementary solution:
[tex]y'+2y=0[/tex]
Solving auxiliary equation:
[tex]m+2=0[/tex]
[tex]m=-2[/tex]
Which gives
[tex]y=c_{1}e^{-2x}[/tex]
[tex]y'=-2c_{1}e^{-2x}[/tex]Now solving original D.E.: [tex]y'+2y=4x[/tex]
[tex]-2c_{1}e^{-2x}+2(c_{1}e^{-2x})=4x[/tex]
I'm lost at this step.
I don't know if this is right, but this is where I'm going with this:
[tex]y'=4x-2y[/tex]
[tex]y'+2y=4x[/tex]
Solving homogeneous for complementary solution:
[tex]y'+2y=0[/tex]
Solving auxiliary equation:
[tex]m+2=0[/tex]
[tex]m=-2[/tex]
Which gives
[tex]y=c_{1}e^{-2x}[/tex]
[tex]y'=-2c_{1}e^{-2x}[/tex]Now solving original D.E.: [tex]y'+2y=4x[/tex]
[tex]-2c_{1}e^{-2x}+2(c_{1}e^{-2x})=4x[/tex]
I'm lost at this step.
Last edited: