- #1
mrb
- 101
- 0
NOTE: I may have figured this out; read the end of the post...
From Shilov's Linear Algebra, Chapter 2, pg.57, #13.
The hyperplanes H_1 and H_2 have dimensions p and q respectively. What is the smallest dimension which the hyperplane H_3 must have in order to be sure to contain both H_1 and H_2?
I'm unsure if Shilov's hyperplane is a standard concept, so I'll describe it here. It is basically a coset, regarding the vector space as a group under addition:
Let L be a subspace of a linear space K, and let x in K be a fixed vector. Let H be the set of all vectors of the form x + y for all y in L. Then H is a hyperplane. Its dimension is the dimension of L.
Shilov's answer is p + q + 1, if this does not exceed the dimension of the space. But how can this be right? We can regard any subspace as a hyperplane, because we can use 0 as the value x from the definition.
So in R^4 let H_1 and H_2 both be the subspace with basis (1, 0, 0, 0). Then they are both of dimension 1, so p+q+1 = 3, and the subspace with bases (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) doesn't contain either of them but is of dimension 3!
WELL, after typing that out I just realized what Shilov may have been getting at. I took him to mean: what is the minimum dimension some arbitrary H_3 must be that we know it contains both? But perhaps he meant: What is the minimum dimension such that some H_3 of that dimension contains both?
I still think my interpretation of the question is the most natural and I'm not completely certain the other is what he meant. What do others think?
Thanks.
From Shilov's Linear Algebra, Chapter 2, pg.57, #13.
Homework Statement
The hyperplanes H_1 and H_2 have dimensions p and q respectively. What is the smallest dimension which the hyperplane H_3 must have in order to be sure to contain both H_1 and H_2?
Homework Equations
I'm unsure if Shilov's hyperplane is a standard concept, so I'll describe it here. It is basically a coset, regarding the vector space as a group under addition:
Let L be a subspace of a linear space K, and let x in K be a fixed vector. Let H be the set of all vectors of the form x + y for all y in L. Then H is a hyperplane. Its dimension is the dimension of L.
The Attempt at a Solution
Shilov's answer is p + q + 1, if this does not exceed the dimension of the space. But how can this be right? We can regard any subspace as a hyperplane, because we can use 0 as the value x from the definition.
So in R^4 let H_1 and H_2 both be the subspace with basis (1, 0, 0, 0). Then they are both of dimension 1, so p+q+1 = 3, and the subspace with bases (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) doesn't contain either of them but is of dimension 3!
WELL, after typing that out I just realized what Shilov may have been getting at. I took him to mean: what is the minimum dimension some arbitrary H_3 must be that we know it contains both? But perhaps he meant: What is the minimum dimension such that some H_3 of that dimension contains both?
I still think my interpretation of the question is the most natural and I'm not completely certain the other is what he meant. What do others think?
Thanks.
Last edited: