- #1
heycoa
- 75
- 0
Homework Statement
a) Prove that m (d^2s/dt^2) = Ftang, the tangential component of the net force on the bead. [hint] one way to do this is to take the time derivative of the equation v^2=v(dot)v. The left side should lead you to (d^2s/dt^2), and the right side should lead to Ftang.
b) One force on the bead is the normal force of the wire (which constrains the bead to stay on the wire). If we assume that all other forces (gravity, etc) are conservative, then their resultant can be derived from a potential energy U. Prove that Ftang= -(dU/ds). This shows that one-dimensional systems of this type can be treated just like linear systems, with x replaced by s and Fx by Ftang.
Homework Equations
The Attempt at a Solution
for problem a) I took v^2=v(dot)v and replaced v with (dx/dt)(x hat) + (dy/dt)(y hat), I then dotted the two together and got v^2= (d^2x/dt^2)+(d^2y/dt^2). Then I multiplied both sides of that equation by (d/dt). This lead to the equation equaling: (d^2s/dt^2)= sqrt((d^2x/dt^2)+(d^2y/dt^2)). Which makes sense. I then multiplied both sides by the mass and wound up with the correct term on the left side (m*(d^2s/dt^2)) and sqrt(m^2(d^2x/dt^2)+m^2(d^2y/dt^2)) on the right hand side. But I do not know if this is correct, I have no idea what the tangential force is supposed to look like.
For problem b) I am stuck and don't really know where to begin. I am calling the potential energy of this system m*g*y, where y is the height of the bead on the wire. I do not know where to go from here.
Please help me,
thank you for your time