- #1
calculus_jy
- 56
- 0
according to Newtons second law:
[tex]\vec{F}=\frac{d\vec{p}}{dt}=m\frac{d\vec{v}}{dt}+\vec{v}\frac{dm}{dt}[/tex](1)
ie force impelled on a body is equal to the rate of change of momentum
however when we use calculus to derive rocket equation we get:
[tex]m\frac{d\vec{v}}{dt}={\vec{v}_{gas\; relative \;to \;rocket}}\frac {dm}{dt}[/tex](2)
where [tex]\vec{v}[/tex] is the velocity of the rocket
my problem now is that many textbook concludes that the net force on the rocket
[tex]\vec{F}=\vec{T}=m\frac{d\vec{v}}{dt}={\vec{v}_{gas\; relative \;to \;rocket}}\frac{dm}{dt}[/tex] where T is the THRUST
but when you apply (2) in (1) would not the force on rocket by gas be
[tex]\vec{F}=m\frac{d\vec{v}}{dt}+\vec{v}\frac{dm}{dt}=({\vec{v}_{gas\; relative \;to \;rocket}+\vec{v})\frac{dm}{dt}[/tex]?
[tex]\vec{F}=\frac{d\vec{p}}{dt}=m\frac{d\vec{v}}{dt}+\vec{v}\frac{dm}{dt}[/tex](1)
ie force impelled on a body is equal to the rate of change of momentum
however when we use calculus to derive rocket equation we get:
[tex]m\frac{d\vec{v}}{dt}={\vec{v}_{gas\; relative \;to \;rocket}}\frac {dm}{dt}[/tex](2)
where [tex]\vec{v}[/tex] is the velocity of the rocket
my problem now is that many textbook concludes that the net force on the rocket
[tex]\vec{F}=\vec{T}=m\frac{d\vec{v}}{dt}={\vec{v}_{gas\; relative \;to \;rocket}}\frac{dm}{dt}[/tex] where T is the THRUST
but when you apply (2) in (1) would not the force on rocket by gas be
[tex]\vec{F}=m\frac{d\vec{v}}{dt}+\vec{v}\frac{dm}{dt}=({\vec{v}_{gas\; relative \;to \;rocket}+\vec{v})\frac{dm}{dt}[/tex]?