- #1
Pietjuh
- 76
- 0
There is this excersise in Griffith's QM text that I can't seem to solve. It's about the calculation of the normalization factor of the spherical harmonic functions using the angular momentum step up operator.
These definitions/results are given:
[tex]Y_l^m = B_l^m e^{im\phi} P_l^m (\cos\theta )[/tex]
[tex]L_{+} = \hbar e^{i\phi}\left(\frac{\partial}{\partial\theta} +i\cot\theta\frac{\partial}{\partial \phi}\right)[/tex]
[tex]L_+ Y_l^m = A_l^m Y_l^{m+1}[/tex]
[tex]A_l^m = \hbar \sqrt{l(l+1) - m(m+1)}[/tex]
The problem is to calculate [tex]B_l^m[/tex]. The approach suggested by Griffiths is to calculate [tex]L_+ Y_l^m[/tex] to get a recurrence relation for [tex]B_l^m[/tex]. This is the point where I get stuck. I guess it has something to do with the deravitive of [tex]P_l^m[/tex]. Anyhow, I'll give you my calculation until the point I got stuck and hope for the best that someone sees a mistake :)
[tex]
L_+ Y_l^m = \hbar e^{i\phi}\left(\frac{\partial}{\partial\theta} +i\cot\theta\frac{\partial}{\partial \phi}\right) B_l^m e^{im\phi} P_l^m (\cos\theta )
[/tex]
[tex] = \hbar e^{i\phi} B_l^m \left [ e^{im\phi}\frac{\partial}{\partial\theta}\left(P_l^m (\cos\theta )\right) + i\cot\theta P_l^m (\cos\theta ) \frac{\partial}{\partial\phi} e^{im\phi} \right]
[/tex]
Now I calculated the derivative of [tex]P_l^m[/tex] using the following formula:
[tex](1-x^2)\frac{dP_l^m}{dx} = \sqrt{1-x^2}P_l^{m+1} - mxP_l^m[/tex]
So using the chain rule [tex]\frac{d P_l^m(\cos\theta)}{d\theta} = \frac{d P_l^m}{dx}\frac{dx}{d\theta}[/tex] with [tex]x=\cos\theta[/tex] I got:
[tex] \frac{d}{d\theta} P_l^m = - \left[\frac{1}{\sqrt{1-\cos^2\theta}}P_l^{m+1} - \frac{m\cos\theta}{\sin^2\theta}P_l^m\right]\sin\theta
= m\frac{\cos\theta}{\sin\theta}P_l^m - P_l^{m+1} [/tex]
Plugging all this in I got the following result:
[tex]\hbar B_l^m \left[ (m-1)P_l^m\cot\theta - P_l^{m+1}\right] = A_l^m B_l^{m+1}P_l^{m+1}[/tex]
but when I try to solve this for [tex]B_l^m[/tex] I get an exploding expression :(
These definitions/results are given:
[tex]Y_l^m = B_l^m e^{im\phi} P_l^m (\cos\theta )[/tex]
[tex]L_{+} = \hbar e^{i\phi}\left(\frac{\partial}{\partial\theta} +i\cot\theta\frac{\partial}{\partial \phi}\right)[/tex]
[tex]L_+ Y_l^m = A_l^m Y_l^{m+1}[/tex]
[tex]A_l^m = \hbar \sqrt{l(l+1) - m(m+1)}[/tex]
The problem is to calculate [tex]B_l^m[/tex]. The approach suggested by Griffiths is to calculate [tex]L_+ Y_l^m[/tex] to get a recurrence relation for [tex]B_l^m[/tex]. This is the point where I get stuck. I guess it has something to do with the deravitive of [tex]P_l^m[/tex]. Anyhow, I'll give you my calculation until the point I got stuck and hope for the best that someone sees a mistake :)
[tex]
L_+ Y_l^m = \hbar e^{i\phi}\left(\frac{\partial}{\partial\theta} +i\cot\theta\frac{\partial}{\partial \phi}\right) B_l^m e^{im\phi} P_l^m (\cos\theta )
[/tex]
[tex] = \hbar e^{i\phi} B_l^m \left [ e^{im\phi}\frac{\partial}{\partial\theta}\left(P_l^m (\cos\theta )\right) + i\cot\theta P_l^m (\cos\theta ) \frac{\partial}{\partial\phi} e^{im\phi} \right]
[/tex]
Now I calculated the derivative of [tex]P_l^m[/tex] using the following formula:
[tex](1-x^2)\frac{dP_l^m}{dx} = \sqrt{1-x^2}P_l^{m+1} - mxP_l^m[/tex]
So using the chain rule [tex]\frac{d P_l^m(\cos\theta)}{d\theta} = \frac{d P_l^m}{dx}\frac{dx}{d\theta}[/tex] with [tex]x=\cos\theta[/tex] I got:
[tex] \frac{d}{d\theta} P_l^m = - \left[\frac{1}{\sqrt{1-\cos^2\theta}}P_l^{m+1} - \frac{m\cos\theta}{\sin^2\theta}P_l^m\right]\sin\theta
= m\frac{\cos\theta}{\sin\theta}P_l^m - P_l^{m+1} [/tex]
Plugging all this in I got the following result:
[tex]\hbar B_l^m \left[ (m-1)P_l^m\cot\theta - P_l^{m+1}\right] = A_l^m B_l^{m+1}P_l^{m+1}[/tex]
but when I try to solve this for [tex]B_l^m[/tex] I get an exploding expression :(