- #1
raintrek
- 75
- 0
Homework Statement
I'm trying to calculate the energy shift given an electron in a 1D harmonic potential has a wavefunction
[tex]\Psi_{0}(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}exp\left(\frac{-m\omega x^{2}}{2\hbar}\right)[/tex]
The shift in [tex]E_{0} = \frac{\hbar\omega}{2} = 2eV[/tex]
due to the time independent perturbation
[tex]V(x) = V_{0}cos\frac{\pi x}{L}[/tex]
where [tex]V_{0}=1eV, L = 5x10^{-10}m[/tex].
I'm told that [tex]\int^{\infty}_{-\infty}e^{-a^{2}x^{2}}cos(bx)dx = \frac{\sqrt{\pi}}{a}e^{-b^{2}/(4a^{2})}[/tex]
Homework Equations
The Attempt at a Solution
OK, here's what I have:
[tex]\Delta E_{0} = V_{00} = \int^{\infty}_{-\infty}\Psi_{0}^{*}V\Psi_{0} dV[/tex]
[tex]= V_{0}\left(\frac{m\omega}{\pi\hbar}\right)^{1/2} \int^{\infty}_{-\infty}exp\left(\frac{-m\omega x^{2}}{\hbar}\right)cos\left(\frac{\pi x}{L}\right)dx[/tex]
Which, using the integration provided leads to
[tex]V_{0}exp\left(\frac{-\pi^{2}\hbar}{4L^{2}m\omega}\right)[/tex]
Now the exponential I have = 1 using the values provided, leading me to [tex]\Delta E_{0} = V_{0} = 1eV[/tex]
HOWEVER, the answers I've been provided with show that:
[tex]\Delta E_{0} = \sqrt{2} exp\left(\frac{\pi^{2}\hbar}{2L^{2}m\omega}\right)[/tex]
The exponential still goes to one, leaving delta E at 1.41 eV, but I can't see for the life of me how it's been arrived at... Help!