- #1
Bill Wells
- 2
- 0
I have seen several references which give the pressure at the center of the Earth at about 3 x 10^11 Pa. (I've seen 3.0 - 3.6). An earlier post on this forum gives the equation for the pressure at the center of a planet as
2*(pi*G/3)*(R^2)*(rho)^2. When I crunch the numbers, I get 1.73 x 10^11, which is about half what most references give. I'm using rho = 5515 kg/m^3.
Where am I going wrong.
The above assumes constant density (rho). If you like the above problem, is there an equation which would give central pressure if the density increases with depth?
Thanks Much
Bill
2*(pi*G/3)*(R^2)*(rho)^2. When I crunch the numbers, I get 1.73 x 10^11, which is about half what most references give. I'm using rho = 5515 kg/m^3.
Where am I going wrong.
The above assumes constant density (rho). If you like the above problem, is there an equation which would give central pressure if the density increases with depth?
Thanks Much
Bill