- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Let $a,\,b$ and $c$ be real numbers such that $a+b+c=1$, prove that
\(\displaystyle \frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)\).
\(\displaystyle \frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)\).