- #1
Doom of Doom
- 86
- 0
So, here is the problem:
Let [tex]x,y\in\mathbb{R}[/tex],
[tex]R=\{{(x,y)\in\mathbb{R}^{2}|x= y r^{2}[/tex], for some [tex]r \in\mathbb{R}\}[/tex].
Prove that [tex]R[/tex] is an equivalence relation on [tex]\mathbb{R}[/tex].
Relevant equations:
[tex]R[/tex] is an equivalence relation on [tex]\mathbb{R}[/tex] if
1. [tex](x,x)\in R[/tex] for all [tex]x\in\mathbb{R}[/tex]
2. [tex](x,y)\in R[/tex] implies [tex](y,x)\in R[/tex]
3. [tex](x,y)\in R[/tex] and [tex](y,z)\in R[/tex] imples [tex](x,z)\in R[/tex].
Ok, so obviously [tex]R[/tex] is reflexive, because [tex]x=x\cdot 1^{2}[/tex].
But what if [tex]x=0[/tex] and [tex]y\neq 0[/tex]? Then [tex]0=y\cdot 0^{2}[/tex], so [tex](0,y)[/tex] is in the set.
However, [tex]y=0 \cdot r^{2}[/tex], is only true if y is zero.
Therefore, (y,0) is not in the set if y is not zero.
Am I missing something here?
Let [tex]x,y\in\mathbb{R}[/tex],
[tex]R=\{{(x,y)\in\mathbb{R}^{2}|x= y r^{2}[/tex], for some [tex]r \in\mathbb{R}\}[/tex].
Prove that [tex]R[/tex] is an equivalence relation on [tex]\mathbb{R}[/tex].
Relevant equations:
[tex]R[/tex] is an equivalence relation on [tex]\mathbb{R}[/tex] if
1. [tex](x,x)\in R[/tex] for all [tex]x\in\mathbb{R}[/tex]
2. [tex](x,y)\in R[/tex] implies [tex](y,x)\in R[/tex]
3. [tex](x,y)\in R[/tex] and [tex](y,z)\in R[/tex] imples [tex](x,z)\in R[/tex].
The Attempt at a Solution
Ok, so obviously [tex]R[/tex] is reflexive, because [tex]x=x\cdot 1^{2}[/tex].
But what if [tex]x=0[/tex] and [tex]y\neq 0[/tex]? Then [tex]0=y\cdot 0^{2}[/tex], so [tex](0,y)[/tex] is in the set.
However, [tex]y=0 \cdot r^{2}[/tex], is only true if y is zero.
Therefore, (y,0) is not in the set if y is not zero.
Am I missing something here?