- #1
whkoh
- 29
- 0
By using the Sine formula in triangle ABC, show that:
[tex]\frac{a+b}{c} = \frac{cos\frac{A-B}{2}}{sin\frac{c}{2}}[/tex].
I've tried:
[tex]\frac{2 sin C}{c} = \frac{sin A}{a} + \frac{sin B}{b}[/tex]
[tex]\frac{2 sin C}{c} = \frac{b sin A + a sin B}{a+b}[/tex]
[tex]\frac{a+b}{c} = \frac{b sin A + a sin B}{2 sin C}[/tex]
[tex]\frac{a+b}{c} = \frac{b sin A + a sin B}{4sin\frac{c}{2}cos\frac{c}{2}}[/tex]
Am I on the right track? Don't really know how to continue.
[tex]\frac{a+b}{c} = \frac{cos\frac{A-B}{2}}{sin\frac{c}{2}}[/tex].
I've tried:
[tex]\frac{2 sin C}{c} = \frac{sin A}{a} + \frac{sin B}{b}[/tex]
[tex]\frac{2 sin C}{c} = \frac{b sin A + a sin B}{a+b}[/tex]
[tex]\frac{a+b}{c} = \frac{b sin A + a sin B}{2 sin C}[/tex]
[tex]\frac{a+b}{c} = \frac{b sin A + a sin B}{4sin\frac{c}{2}cos\frac{c}{2}}[/tex]
Am I on the right track? Don't really know how to continue.