- #1
gtfitzpatrick
- 379
- 0
The real matrix A= [tex]
\begin{pmatrix}\alpha & \beta \\ 1 & 0 \end{pmatrix}
[/tex] has distinct eigenvalues [tex]\lambda1[/tex] and [tex]\lambda2[/tex].
If P=[tex]
\begin{pmatrix}\lambda1 & \lambda2 \\ 1 & 0 \end{pmatrix}
[/tex]
proove that P[tex]^{}^-^1[/tex]AP = D =diag{[tex]\lambda1[/tex] , [tex]\lambda2[/tex]}.
deduce that, for every positive integer m, A[tex]^{}m[/tex] = PD[tex]^{}m[/tex]P[tex]^{}^-^1)[/tex]
so i just tryed to multiply the whole lot out, (p^-1 is easy to find, just swap,change signs)
and i got
[tex]
\begin{pmatrix}\lambda1(\alpha - \lambda2) + \beta & \lambda2(\alpha - \lambda2) + \beta \\ \lambda1(-\alpha + \lambda1) - \beta & \lambda2(-\alpha + \lambda1) - \beta \end{pmatrix}
[/tex]
am i going the right road with this or should i be approaching it differently?
\begin{pmatrix}\alpha & \beta \\ 1 & 0 \end{pmatrix}
[/tex] has distinct eigenvalues [tex]\lambda1[/tex] and [tex]\lambda2[/tex].
If P=[tex]
\begin{pmatrix}\lambda1 & \lambda2 \\ 1 & 0 \end{pmatrix}
[/tex]
proove that P[tex]^{}^-^1[/tex]AP = D =diag{[tex]\lambda1[/tex] , [tex]\lambda2[/tex]}.
deduce that, for every positive integer m, A[tex]^{}m[/tex] = PD[tex]^{}m[/tex]P[tex]^{}^-^1)[/tex]
so i just tryed to multiply the whole lot out, (p^-1 is easy to find, just swap,change signs)
and i got
[tex]
\begin{pmatrix}\lambda1(\alpha - \lambda2) + \beta & \lambda2(\alpha - \lambda2) + \beta \\ \lambda1(-\alpha + \lambda1) - \beta & \lambda2(-\alpha + \lambda1) - \beta \end{pmatrix}
[/tex]
am i going the right road with this or should i be approaching it differently?