- #1
- 1,426
- 3
After browsing some maths forums, I come across some problems. But since that forum is quite unactive, so I think I'll post it here.
So this is not homework.
I have never seen this kind of problem before. I've tried all of them, and so I'm posting for some confirmation from you guys. There are 2 problems in total.
1. Prove the following limit does not exist:
[tex]\lim_{n \rightarrow + \infty} \sin (n)[/tex]
Proof:
There exists infinity n's such that:
[tex]\frac{\pi}{6} + 2k \pi < n < \frac{5 \pi}{6} + 2k \pi, \ k \in \mathbb{Z}[/tex], it means:
[tex]\frac{1}{2} < \sin (n) < 1[/tex]
There also exists infinity n's such that:
[tex]-\frac{5 \pi}{6} + 2k \pi < n < -\frac{\pi}{6} + 2k \pi, \ k \in \mathbb{Z}[/tex], it means:
[tex]- 1 < \sin (n) < - \frac{1}{2}[/tex]
So as n tends to infinity, sin(n) can take either value from [tex]\left] -1 ; \ - \frac{1}{2} \right[[/tex], or [tex]\left] \frac{1}{2} ; \ \ 1 \right[[/tex]. That yields the limit above does not exists.
-----------------
2. Prove the following limit does not exist:
[tex]\lim_{n \rightarrow + \infty} \sin (n ^ 2)[/tex]
Proof:
If that limit exists then:
[tex]\lim_{n \rightarrow + \infty} \sin ((n + 1) ^ 2) - \sin (n ^ 2) = 0[/tex]
That means:
[tex]\lim_{n \rightarrow + \infty} \sin ((n + 1) ^ 2) - \sin (n ^ 2) = 2 \lim_{n \rightarrow + \infty} \cos \left( n ^ 2 + n + \frac{1}{2} \right) \sin \left( n + \frac{1}{2} \right) = 0[/tex]
Since [tex]\lim_{n \rightarrow + \infty} \sin \left( n + \frac{1}{2} \right)[/tex] does not exist (it can be proved exactly like number 1), it means that, if this limit: [tex]\lim_{n \rightarrow + \infty} \sin (n ^ 2)[/tex] exists then this limit: [tex]\lim_{n \rightarrow + \infty} \cos \left( n ^ 2 + n + \frac{1}{2} \right) = 0[/tex] must be true.
But if this limit [tex]\lim_{n \rightarrow + \infty} \cos \left( n ^ 2 + n + \frac{1}{2} \right) = 0[/tex] is true then: [tex]\lim_{n \rightarrow + \infty} \cos \left[ 2 \left( n ^ 2 + n + \frac{1}{2} \right) \right] = \lim_{n \rightarrow + \infty} \cos \left( 2 n ^ 2 + 2n + 1 \right) = \lim_{n \rightarrow + \infty} \cos ^ 2 \left( n ^ 2 + n + \frac{1}{2} \right) - \sin ^ 2 \left( n ^ 2 + n + \frac{1}{2} \right) = -1[/tex] must also be true.
But [itex]\cos (\pi + 2k \pi) = -1, \ k \in \mathbb{Z}[/itex]
Define a sequence {nk}, such that ni = 2i2 + 2i + 1.
Also define a sequence {ux} : [tex]u_i \in \mathbb{Z ^ +}[/tex] such that:
[tex]\left| \pi + 2u_i \pi - n_i \right|[/tex] will return the smallest positive number possible.
That means, as i tends to infinity [tex]\left| \pi + 2u_i \pi - n_i \right|[/tex] must tend to 0.
Assume that's it's true, we have: we can choose a number [itex]\epsilon > 0[/itex], there will exist some N such that if p > N then:
[tex]\left| \pi + 2u_p \pi - n_p \right| = \left| \pi + 2u_p \pi - 2p ^ 2 - 2p - 1 \right| < \epsilon[/tex] If p > N, then of course p + 1 > N
[tex]\left| \pi + 2u_{p + 1} \pi - n_{p + 1} \right|[/tex]
[tex]= \left| \pi + 2u_{p + 1} \pi - 2(p + 1) ^ 2 - 2(p + 1) - 1 \right| < \epsilon[/tex]. But we have:
[tex]\left| \pi + 2u_{p + 1} \pi - 2(p + 1) ^ 2 - 2(p + 1) - 1 \right| = \left| \pi + 2u_{p + 1} \pi - 2p ^ 2 - 6p - 5 \right| = \left| (\pi + 2u_p \pi - 2p ^ 2 - 2p - 1) + 2u_{p + 1} \pi - 4p - 4 - 2u_p \pi \right| < \epsilon[/tex]
Now if [itex]\epsilon[/itex] is very small [itex]\pi + 2u_p \pi - 2p ^ 2 - 2p - 1[/itex] will tend to 0. To keep the inequality true, [itex]2u_{p + 1} \pi - 4p - 4 - 2u_p \pi = 2 \pi (u_{p + 1} - u_p) - 2p - 4[/tex] must also tend to 0. That means, as p tends to inifity:
2p + 4 will tend to some multiple of [itex]\pi[/itex]. But that's clearly wrong. So that means this limit:
[tex]\lim_{n \rightarrow + \infty} \cos \left( 2 n ^ 2 + 2n + 1 \right)[/tex]
does not exist. So this limit:
[tex]\lim_{n \rightarrow + \infty} \sin (n ^ 2)[/tex] does not exist either.
Are my steps correct? Is there any other way?
Thanks... :)
So this is not homework.
I have never seen this kind of problem before. I've tried all of them, and so I'm posting for some confirmation from you guys. There are 2 problems in total.
1. Prove the following limit does not exist:
[tex]\lim_{n \rightarrow + \infty} \sin (n)[/tex]
Proof:
There exists infinity n's such that:
[tex]\frac{\pi}{6} + 2k \pi < n < \frac{5 \pi}{6} + 2k \pi, \ k \in \mathbb{Z}[/tex], it means:
[tex]\frac{1}{2} < \sin (n) < 1[/tex]
There also exists infinity n's such that:
[tex]-\frac{5 \pi}{6} + 2k \pi < n < -\frac{\pi}{6} + 2k \pi, \ k \in \mathbb{Z}[/tex], it means:
[tex]- 1 < \sin (n) < - \frac{1}{2}[/tex]
So as n tends to infinity, sin(n) can take either value from [tex]\left] -1 ; \ - \frac{1}{2} \right[[/tex], or [tex]\left] \frac{1}{2} ; \ \ 1 \right[[/tex]. That yields the limit above does not exists.
-----------------
2. Prove the following limit does not exist:
[tex]\lim_{n \rightarrow + \infty} \sin (n ^ 2)[/tex]
Proof:
If that limit exists then:
[tex]\lim_{n \rightarrow + \infty} \sin ((n + 1) ^ 2) - \sin (n ^ 2) = 0[/tex]
That means:
[tex]\lim_{n \rightarrow + \infty} \sin ((n + 1) ^ 2) - \sin (n ^ 2) = 2 \lim_{n \rightarrow + \infty} \cos \left( n ^ 2 + n + \frac{1}{2} \right) \sin \left( n + \frac{1}{2} \right) = 0[/tex]
Since [tex]\lim_{n \rightarrow + \infty} \sin \left( n + \frac{1}{2} \right)[/tex] does not exist (it can be proved exactly like number 1), it means that, if this limit: [tex]\lim_{n \rightarrow + \infty} \sin (n ^ 2)[/tex] exists then this limit: [tex]\lim_{n \rightarrow + \infty} \cos \left( n ^ 2 + n + \frac{1}{2} \right) = 0[/tex] must be true.
But if this limit [tex]\lim_{n \rightarrow + \infty} \cos \left( n ^ 2 + n + \frac{1}{2} \right) = 0[/tex] is true then: [tex]\lim_{n \rightarrow + \infty} \cos \left[ 2 \left( n ^ 2 + n + \frac{1}{2} \right) \right] = \lim_{n \rightarrow + \infty} \cos \left( 2 n ^ 2 + 2n + 1 \right) = \lim_{n \rightarrow + \infty} \cos ^ 2 \left( n ^ 2 + n + \frac{1}{2} \right) - \sin ^ 2 \left( n ^ 2 + n + \frac{1}{2} \right) = -1[/tex] must also be true.
But [itex]\cos (\pi + 2k \pi) = -1, \ k \in \mathbb{Z}[/itex]
Define a sequence {nk}, such that ni = 2i2 + 2i + 1.
Also define a sequence {ux} : [tex]u_i \in \mathbb{Z ^ +}[/tex] such that:
[tex]\left| \pi + 2u_i \pi - n_i \right|[/tex] will return the smallest positive number possible.
That means, as i tends to infinity [tex]\left| \pi + 2u_i \pi - n_i \right|[/tex] must tend to 0.
Assume that's it's true, we have: we can choose a number [itex]\epsilon > 0[/itex], there will exist some N such that if p > N then:
[tex]\left| \pi + 2u_p \pi - n_p \right| = \left| \pi + 2u_p \pi - 2p ^ 2 - 2p - 1 \right| < \epsilon[/tex] If p > N, then of course p + 1 > N
[tex]\left| \pi + 2u_{p + 1} \pi - n_{p + 1} \right|[/tex]
[tex]= \left| \pi + 2u_{p + 1} \pi - 2(p + 1) ^ 2 - 2(p + 1) - 1 \right| < \epsilon[/tex]. But we have:
[tex]\left| \pi + 2u_{p + 1} \pi - 2(p + 1) ^ 2 - 2(p + 1) - 1 \right| = \left| \pi + 2u_{p + 1} \pi - 2p ^ 2 - 6p - 5 \right| = \left| (\pi + 2u_p \pi - 2p ^ 2 - 2p - 1) + 2u_{p + 1} \pi - 4p - 4 - 2u_p \pi \right| < \epsilon[/tex]
Now if [itex]\epsilon[/itex] is very small [itex]\pi + 2u_p \pi - 2p ^ 2 - 2p - 1[/itex] will tend to 0. To keep the inequality true, [itex]2u_{p + 1} \pi - 4p - 4 - 2u_p \pi = 2 \pi (u_{p + 1} - u_p) - 2p - 4[/tex] must also tend to 0. That means, as p tends to inifity:
2p + 4 will tend to some multiple of [itex]\pi[/itex]. But that's clearly wrong. So that means this limit:
[tex]\lim_{n \rightarrow + \infty} \cos \left( 2 n ^ 2 + 2n + 1 \right)[/tex]
does not exist. So this limit:
[tex]\lim_{n \rightarrow + \infty} \sin (n ^ 2)[/tex] does not exist either.
Are my steps correct? Is there any other way?
Thanks... :)
Last edited: